Study suggests new approach to common cause of blindness

June 14, 2009,

Researchers at the University of North Carolina at Chapel Hill School of Medicine in collaboration with lead investigators at the University of Kentucky have identified a new target for the diagnosis and treatment of age-related macular degeneration, the most common cause of blindness in older Americans.

In a study published by the journal Nature, the researchers demonstrate that blocking the activity of a specific protein - called CCR3 -- can reduce the abnormal blood vessel growth that leads to macular degeneration. Furthermore, targeting this new protein may prove to be safer and more effective than the current treatment for the disease, which is directed at a protein called vascular endothelial growth factor or "VEGF."

The discovery -- made in mouse models and cultured human cells --may also enable physicians to catch the disease in its earliest stages, before have fully infiltrated and destroyed the central portion of the eye's retina -- an area known as the macula -- to cause .

"It would be much better to prevent the disease in the first place," said study co-author and principal investigator of the UNC study site, Mary Elizabeth Hartnett, M.D., a professor of ophthalmology in the UNC School of Medicine. "An exciting implication of this study was that the CCR3 protein could be detected in early abnormal blood vessel growth, giving us the opportunity to prevent structural damage to the retina and preserve vision."

Age-related macular degeneration (AMD) affects 30 to 50 million people globally, and that number is expected to double in the next decade as the baby boomer generation ages. The disease is currently treated with drugs that block the effects of VEGF, a growth factor that promotes the growth of abnormal blood vessels. However, because this factor is also involved in the growth and health of normal blood vessels, concerns have been raised about the safety of its long-term use. To date, however, these anti-VEGF agents have been found to be safe.

Thus, the investigators sought to identify a new target for treatment that is specific to AMD. They detected the presence of the CCR3 protein in eye tissue from humans with AMD but not in that of individuals of similar age who did not have the disease. When they blocked CCR3, either with drugs or through genetic engineering, they saw a decrease in the generation of abnormal blood vessels. Drugs targeting CCR3 were significantly more effective than those targeting VEGF, meaning this could represent a new therapy for the two-thirds of patients that do not respond to current treatment.

The researchers now may look to see if levels of the can be detected in the bloodstream in order to identify people who are at risk of developing the disease. They also plan to search for genetic changes in the CCR3 gene in patients with AMD to better understand its causes.

Source: University of North Carolina School of Medicine (news : web)

Related Stories

Recommended for you

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.