Pushmi-pullyu of B-cell development discovered

June 25, 2009

James Hagman, Ph.D., professor of immunology at National Jewish Health and his colleagues have identified two "molecular motors" that work in opposing directions to control the development of B cells in the immune system.

Although every cell in the body carries the genes necessary to function as an antibody-producing B cell, only a small proportion of mature into those important immune-system cells. James Hagman, PhD, Professor of Immunology at National Jewish Health and his colleagues have identified two "molecular motors" that work in opposing directions to control the development of B cells. They published their findings June 19 in the online version of The USA.

"We found that these two 'chromatin remodeling complexes' work in a sort of pushmi-pullyu manner to induce or retard epigenetic changes that allow for the development of a B cell," said Hagman. The pushmi-pullyu was a fictional animal in the Dr. Doolittle stories that had a head at opposite ends of its body, each pulling in a different direction. "The complexes help control both the unspooling of DNA to make genes accessible and the demethylation of DNA that removes silencing markers."

Although DNA in every cell contains the genes necessary to become , two factors help keep them silent. One is the fact that the two meters of DNA inside a tiny is wrapped around millions of tiny spools, linked together like a string of pearls, which help keep the hereditary molecule from becoming irretrievably tangled. When wrapped tightly around these spools, individual genes are inaccessible to the molecules that bind and activate them. Second, many of the genes have small methyl groups, a carbon and three (CH3), on their DNA in specific places, which also prevent them from being activated. These factors are considered epigenetic states, modifications to existing DNA that control their activation or silencing.

Dr. Hagman and his colleagues previously identified a protein, known as Early B-cell Factor or EBF, which they dubbed a 'pioneer factor.' By altering the epigenetic state of several genes, it is estimated that EBF can turn on hundreds of genes necessary for B-cell development. The researchers did not know, however, how EBF controlled those epigenetic factors.

They suspected that two chromatin remodeling complexes, conglomerations of several different proteins known to burn energy and physically move the tiny spools holding DNA, played a role. In a series of cell-culture experiments they showed that the two chromatin remodeling complexes, SWI/SNF and Mi2/NuRD, had opposing effects.

Transcription of a B-cell gene increased 70-fold when a cell contained both EBF and the two chromatin remodeling complexes. When the researchers inactivated the SWI/SNF complex, that activation fell to 8-fold, suggesting that SWI/SNF helped promote B-cell development. When they inactivated Mi-2/NuRD instead, expression of the B-cell gene increased 1,727-fold. Mi-2/NuRD was apparently acting as a brake, and its removal vastly increased expression of the B-cell gene.

Additional experiments showed that these two CRCs influenced the arrangement of DNA on the tiny histone spools inside the cell nucleus and the methylation of the B-cell gene.

"We knew that the two complexes were capable of influencing the arrangement of histone spools and accessibility of different genes, but were pleasantly surprised that they also affected the methylation state of the ," said Dr. Hagman.

Source: National Jewish Medical and Research Center

Related Stories

Recommended for you

Add broken DNA repair to the list of inherited colorectal cancer risk factors

February 23, 2018
An analysis of nearly 3,800 colorectal cancer patients—the largest germline risk study for this cancer to date—reveals opportunities for improved risk screening and, possibly, treatment.

Team identifies genetic defect that may cause rare movement disorder

February 22, 2018
A Massachusetts General Hospital (MGH)-led research team has found that a defect in transcription of the TAF1 gene may be the cause of X-linked dystonia parkinsonism (XDP), a rare and severe neurodegenerative disease. The ...

Defects on regulators of disease-causing proteins can cause neurological disease

February 22, 2018
When the protein Ataxin1 accumulates in neurons it causes a neurological condition called spinocerebellar ataxia type 1 (SCA1), a disease characterized by progressive problems with balance. Ataxin1 accumulates because of ...

15 new genes identified that shape human faces

February 20, 2018
Researchers from KU Leuven (Belgium) and the universities of Pittsburgh, Stanford, and Penn State have identified 15 genes that determine facial features. The findings were published in Nature Genetics.

New algorithm can pinpoint mutations favored by natural selection in large sections of the human genome

February 20, 2018
A team of scientists has developed an algorithm that can accurately pinpoint, in large regions of the human genome, mutations favored by natural selection. The finding provides deeper insight into how evolution works, and ...

New software helps detect adaptive genetic mutations

February 20, 2018
Researchers from Brown University have developed a new method for sifting through genomic data in search of genetic variants that have helped populations adapt to their environments. The technique, dubbed SWIF(r), could be ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.