Scientists capture the first image of memories being made

June 18, 2009,
The increase in green fluorescence represents the imaging of local translation at synapses during long-term synaptic plasticity. Credit: Science

The ability to learn and to establish new memories is essential to our daily existence and identity; enabling us to navigate through the world. A new study by researchers at the Montreal Neurological Institute and Hospital (The Neuro), McGill University and University of California, Los Angeles has captured an image for the first time of a mechanism, specifically protein translation, which underlies long-term memory formation.

The finding provides the first visual evidence that when a new memory is formed new proteins are made locally at the synapse - the connection between - increasing the strength of the synaptic connection and reinforcing the memory. The study published in Science, is important for understanding how memory traces are created and the ability to monitor it in real time will allow a detailed understanding of how memories are formed.

When considering what might be going on in the brain at a molecular level two essential properties of memory need to be taken into account. First, because a lot of information needs to be maintained over a long time there has to be some degree of stability. Second, to allow for learning and adaptation the system also needs to be highly flexible.

For this reason, research has focused on synapses which are the main site of exchange and storage in the brain. They form a vast but also constantly fluctuating network of connections whose ability to change and adapt, called synaptic plasticity, may be the fundamental basis of learning and memory.

"But, if this network is constantly changing, the question is how do memories stay put, how are they formed? It has been known for some time that an important step in long-term memory formation is "translation", or the production, of new proteins locally at the synapse, strengthening the synaptic connection in the reinforcement of a memory, which until now has never been imaged," says Dr. Wayne Sossin, neuroscientist at The Neuro and co-investigator in the study. "Using a translational reporter, a fluorescent protein that can be easily detected and tracked, we directly visualized the increased local translation, or protein synthesis, during memory formation. Importantly, this translation was synapse-specific and it required activation of the post-synaptic cell, showing that this step required cooperation between the pre and post-synaptic compartments, the parts of the two neurons that meet at the synapse. Thus highly regulated local translation occurs at synapses during long-term plasticity and requires trans-synaptic signals."

Long-term memory and synaptic plasticity require changes in gene expression and yet can occur in a synapse-specific manner. This study provides evidence that a mechanism that mediates this gene expression during neuronal plasticity involves regulated translation of localized mRNA at stimulated synapses. These findings are instrumental in establishing the molecular processes involved in long-term and provide insight into diseases involving memory impairment.

Source: McGill University (news : web)

Related Stories

Recommended for you

New type of vertigo identified

May 23, 2018
Neurologists have identified a new type of vertigo with no known cause, according to a study published in the May 23, 2018, online issue of Neurology, the medical journal of the American Academy of Neurology.

In a break with dogma, myelin boosts neuron growth in spinal cord injuries

May 23, 2018
Recovery after severe spinal cord injury is notoriously fraught, with permanent paralysis often the result. In recent years, researchers have increasingly turned to stem cell-based therapies as a potential method for repairing ...

Leg exercise is critical to brain and nervous system health

May 23, 2018
Groundbreaking research shows that neurological health depends as much on signals sent by the body's large, leg muscles to the brain as it does on directives from the brain to the muscles. Published today in Frontiers in ...

Changes to specific MicroRNA involved in development of Lou Gehrig's disease

May 23, 2018
A new Tel Aviv University study identifies a previously unknown mechanism involved in the development of Lou Gehrig's disease, or amyotrophic lateral sclerosis (ALS). The research focuses on a specific microRNA whose levels ...

Memory molecule limits plasticity by calibrating calcium

May 23, 2018
The brain has an incredible capacity to support a lifetime of learning and memory. Each new experience fundamentally alters the connections between cells in the brain called synapses. To accommodate synaptic alterations, ...

Study confirms that men and women tend to adopt different navigation strategies

May 23, 2018
When navigating in a known environment, men prefer to take shortcuts to reach their destination more quickly, while women tend to use routes they know. This is according to Alexander Boone of UC Santa Barbara in the US who ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

robbor
not rated yet Jun 18, 2009
score one for the advancement of robots
finitesolutions
not rated yet Jun 19, 2009
Great! I will not have to do anything once the robots take over. Lazy age will be a pleasant age. It suits me very well. Long function the robots!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.