New imaging studies reveal mechanics of neuron migration

July 23, 2009,

(PhysOrg.com) -- The development of the brain proceeds a little like the European settlement of North America. The earliest pioneers settled on the east coast with subsequent waves of settlers forming communities further and further westward. In cortical regions of the developing brain, generations of young neurons undergo a staged migration as well, with the earliest-born cells staying relatively close to their birthplace and subsequent generations traveling further, ultimately stratifying into six neuronal layers in the mature brain. Now, for the first time, imaging studies have identified the “motors” that propel a unique form of cell migration that creates these layers that underlie the formation of synaptic circuitry.

“The complexity of the cell types is so much greater in the brain than in other parts of the body, nothing else compares,” says Mary E. Hatten, head of the Laboratory of Developmental Neurobiology at The Rockefeller University. “Since different classes of neurons are born at different times in the brain’s development, neuronal migration is responsible for patterning specific types of cells into particular layers. The normal development of the brain depends critically on this specialized form of motility, which places the neurons in the right layer.”

Hatten and former postdoctoral associate David Solecki, now at St. Jude Children’s Research Hospital, focused on the mechanism of neuronal migration in cortical regions of the brain, including the cerebellum, and . With colleagues, they developed techniques to fluorescently label the inside the tiny neurons and watch their dynamics as the cells migrate along what Hatten calls a monorail system — glial fibers — toward their destinations. The researchers used a spinning-disk, confocal microscope, equipped with a CCD camera to image the migration in real time at extremely high resolution, allowing them to examine the motor proteins in great detail.

The Hatten lab had already discovered in 2004 that a conserved polarity protein, par6α, controls the migration of neurons along glial guides. The new research, published July 16 in Neuron, identifies the motors regulated by par6α. The researchers found that par6α localizes in a key organelle called the centrosome directly in front of the cell nucleus, and effects the phosphorylation of an enzyme called the myosin light chain kinase, needed to activate actomyosin motors. These motors appear to pull the cell forward in discrete steps: They first assemble in front of the nucleus, pull the cell forward, disperse as the cell pauses and then assemble again as the neuron takes another step along the glial guide. The researchers demonstrated that any significant change in the dynamics of actomyosin assembly or par6α activity stops neuron migration in its tracks.

The mechanics of this specialized form of neuron migration seen in the developing brain are distinct from those that direct the classical migration of epithelial and fibroblasts, as actomyosin motors in the latter are at the tip of the migrating cell in a “leading edge” that is relatively far removed from the cell nucleus.

“Neuronal migration is a very delicate process. The model we’re suggesting is that the actomyosin dynamics are pulling the system forward, but they’re close to the nucleus to control this very regulated and precise kind of motility,” Hatten says. “This specialized motility is essential to the formation of neuronal layers in . Defects in the process can result in all of the major malformations such as lissencephaly as well as a misfiring of the neuronal circuitry as occurs in epilepsy.”

More information: Neuron 63(1): 63-80 (July 16, 2009) Myosin II motors and F-actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided neuronal migration, David J. Solecki, Niraj Trivedi, Eve-Ellen Govek, Ryan A. Kerekes, Shaun S. Gleason and Mary E. Hatten -- www.cell.com/neuron/abstract/S0896-6273(09)00435-8

Provided by Rockefeller University (news : web)

Related Stories

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.