Prion protein identified as a novel early pancreatic cancer biomarker

August 17, 2009

Mad cow disease is caused by the accumulation of an abnormal protein, the prion, in the brain of an affected patient. Outside of the brain, very little is known about prions. Case Western Reserve University School of Medicine, researchers have, for the first time, identified the prion as a biomarker for pancreatic cancer. Pancreatic cancer is one of the most deadly cancers in humans; the five year survival rate is less than 10 percent.

Chaoyang Li, Ph.D., Wei Xin, M.D., and professor of pathology, Man-Sun Sy, Ph.D., discovered the mechanism by which prions causes tumors to grow more aggressively. They published these findings in the September issue of the .

Unlike normal cells, in human pancreatic cells the prion is incompletely processed and binds to a molecule inside the cell known as filamin A. Filamin A is an important regulator of the cell's skeleton and its signaling machineries. The binding of the incompletely processed prion to filamin A disrupts the cell's organization and signaling. As a result, the tumor grow more aggressively. On the other hand, when the prion level is reduced, the tumor cell loses its ability to grow in tissue culture and in animals. Most importantly, Dr. Li, et al. found that a subpopulation of patients had incompletely processed prion protein in their pancreatic cancer. This subgroup of patients had significantly shorter survival compared to patients whose tumors do not have prion.

According to Dr. Sy, "Currently there is no early diagnostic marker for . Detection of the incompletely processed prion may provide such a marker. Preventing the binding of prion to filamin A may open new avenues for therapeutic intervention of this deadly disease."

Next, Drs. Li and Sy will look to determine if this type of protein expression is seen in other types of cancer.

Source: Case Western Reserve University (news : web)

Related Stories

Recommended for you

Researchers repurpose immune-activating cytokine to fight breast cancer

December 18, 2017
The most lethal form of breast cancer could have a new treatment option, according to new research out of the Case Comprehensive Cancer Center at Case Western Reserve University School of Medicine. In the Proceedings of the ...

Study prompts new ideas on cancers' origins

December 16, 2017
Rapidly dividing, yet aberrant stem cells are a major source of cancer. But a new study suggests that mature cells also play a key role in initiating cancer—a finding that could upend the way scientists think about the ...

What does hair loss have to teach us about cancer metastasis?

December 15, 2017
Understanding how cancer cells are able to metastasize—migrate from the primary tumor to distant sites in the body—and developing therapies to inhibit this process are the focus of many laboratories around the country. ...

Cancer immunotherapy may work better in patients with specific genes

December 15, 2017
Cancer cells arise when DNA is mutated, and these cells should be recognized as "foreign" by the immune system. However, cancer cells have found ways to evade detection by the immune system.

Scientists pinpoint gene to blame for poorer survival rate in early-onset breast cancer patients

December 15, 2017
A new study led by scientists at the University of Southampton has found that inherited variation in a particular gene may be to blame for the lower survival rate of patients diagnosed with early-onset breast cancer.

Scientists unlock structure of mTOR, a key cancer cell signaling protein

December 14, 2017
Researchers in the Sloan Kettering Institute have solved the structure of an important signaling molecule in cancer cells. They used a new technology called cryo-EM to visualize the structure in three dimensions. The detailed ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.