Cracking the brain's numerical code

September 24, 2009

By carefully observing and analyzing the pattern of activity in the brain, researchers have found that they can tell what number a person has just seen. They can similarly tell how many dots a person has been presented with, according to a report published online on September 24th in Current Biology.

These findings confirm the notion that numbers are encoded in the brain via detailed and specific activity patterns and open the door to more sophisticated exploration of humans' high-level numerical abilities. Although "number-tuned" neurons have been found in monkeys, scientists hadn't managed to get any farther than particular brain regions before now in humans.

"It was not at all guaranteed that with functional imaging it would be possible to pick this up," said Evelyn Eger of INSERM in France. "In the monkey, neurons preferring one or the other numerosity appear highly intermixed among themselves as well as with neurons responding to other things, so it might seem highly unlikely that with fMRI [] at 1.5 mm resolution—where one voxel contains many thousands of neurons—one would be able to detect differences in activity patterns between individual numbers. The fact that this worked means that there is probably a somewhat more structured layout of preferences for individual numbers that has yet to be revealed by neurophysiological methods."

The researchers presented ten study participants with either number symbols or dots while their brains were scanned with fMRI. They then used a multivariate analysis method to devise a way of decoding the numbers or number of dots people had observed.

Although the brain patterns corresponding to number symbols differed somewhat from those for the same number of objects, the numerosity of dot sets can be predicted above chance from the evoked by digits, the researchers show. That doesn't work the other way around, however.

At least for small numbers of dots, the researchers did find that the patterns change gradually in a way that reflects the ordered nature of the numbers—allowing one to conclude that 6 is between 5 and 7, for instance. In the case of digits, the researchers could not detect that same gradual change, suggesting that their methods are not yet sensitive enough or that digits are in fact coded as more precise, discrete entities.

The methods used in the new study may ultimately help to unlock how the makes more sophisticated calculations, the researchers say.

"With these codes, we are only beginning to access the most basic building blocks that symbolic math probably relies on," Eger said. "We still have no clear idea of how these number representations interact and are combined in mathematical operations, but the fact that we can resolve them in humans gives hope that at some point we can come up with paradigms that let us address this."

Source: Cell Press (news : web)

Related Stories

Recommended for you

Mechanism explains how seizures may lead to memory loss

October 16, 2017
Although it's been clear that seizures are linked to memory loss and other cognitive deficits in patients with Alzheimer's disease, how this happens has been puzzling. In a study published in the journal Nature Medicine, ...

Study shows people find well-being more so from special places than from mementoes

October 16, 2017
(Medical Xpress)—A team of researchers at the University of Surrey has found that people experience a feeling of well-being when thinking about or visiting a place that holds special meaning to them. They also found that ...

New study describes how dopamine tells you it isn't worth the wait

October 16, 2017
How do we know if it was worth the wait in line to get a meal at the new restaurant in town? To do this our brain must be able to signal how good the meal tastes and associate this feeling with the restaurant. This is done ...

A dietary supplement dampens the brain hyperexcitability seen in seizures or epilepsy

October 14, 2017
Seizure disorders—including epilepsy—are associated with pathological hyperexcitability in brain neurons. Unfortunately, there are limited available treatments that can prevent this hyperexcitability. However, University ...

fMRI scans reveal why pain tolerance goes up during female orgasm and shows brain does not turn off

October 13, 2017
(Medical Xpress)—A team of researchers at Rutgers University has determined why women are able to tolerate more pain during the time leading up to and during orgasm. In their paper published in the Journal of Sexual Medicine, ...

Neuroscientists identify genetic changes in microglia in a mouse model of neurodegeneration and Alzheimer's disease

October 13, 2017
Microglia, immune cells that act as the central nervous system's damage sensors, have recently been implicated in Alzheimer's disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.