Researchers show efficacy of gene therapy in mouse models of Huntington's disease

October 30, 2009,

Researchers at the California Institute of Technology (Caltech) have shown that a highly specific intrabody (an antibody fragment that works against a target inside a cell) is capable of stalling the development of Huntington's disease in a variety of mouse models.

" in these models successfully attenuated the symptoms of and increased life span," notes Paul Patterson, the Anne P. and Benjamin F. Biaggini Professor of Biological Sciences.

Patterson is the senior investigator on the study, which was published in the October 28 issue of the .

Huntington's disease is a with a . The disorder has its roots in a mutation in a protein called huntingtin, or Htt. (The gene itself is also referred to as the .)

All versions of the Htt gene have repeats of a particular trio of nucleotides—specifically, C, A, and G, which together code for the amino acid glutamine. In most people, that trio is repeated between 10 and 35 times. But in people who develop Huntington's disease, that genetic stutter goes on and on; they will have anywhere between 36 to upwards of 120 repeats.

The result of all these repeats? An abnormally long version of the Htt protein, which gets chopped up into smaller, toxic pieces and accumulates in , debilitating them.

Enter Patterson group members Amber Southwell and Jan Ko, who began to look at the efficacy of two different intrabodies that had been shown, in cell cultures and fruit-fly models, to reduce the accumulation of toxic Htt protein. To see whether those effects would hold true in mammalian systems as well, the team tested the intrabodies in a series of five different mouse models of Huntington's.

One of the two intrabodies had some negative results, actually increasing Huntington's-related mortality in one model.

But the other intrabody—called Happ1—was an unqualified success, restoring motor and cognitive function to the mice, and reducing neuron loss as well as toxic protein accumulation. And in one model, it increased both body weight and life span.

Happ1 targets an amino-acid sequence unique to the Htt protein that is rich in the amino acid proline. Because of this, the action of Happ1 is expected to be extremely specific. "Our studies show that the use of intrabodies can block the parts of mutant huntingtin that cause its toxicity without affecting the wildtype, or normal, huntingtin—or any other proteins," says Patterson. In other words, he says, this has the potential to be the kind of "silver-bullet therapy" that many medical researchers look for.

This sort of research is of particular importance in the treatment of Huntington's disease, says Patterson. Despite the fact that this disorder has a single-gene origin, current treatments tend to address the symptoms of the disease, not its cause. That means it is currently impossible to prevent the disease from doing significant damage in the first place.

What's the next step in pursuit of this goal? "We need to improve the efficacy of the intrabody," Patterson says, "and we need to build a viral vector that can be controlled—induced and turned off—in case of unexpected side effects. This is a general goal shared by all types of experimental gene therapies."

Source: California Institute of Technology (news : web)

Related Stories

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.