Arsenic biomethylation required for oxidative DNA damage

November 23, 2009

Biomethylation of arsenic compounds appears to cause oxidative DNA damage and to increase their carcinogenicity, according to a new study published online November 23 in the Journal of the National Cancer Institute.

Although biomethylation was once believed to detoxify inorganic , it is now thought to enhance its toxicity and potentially its carcinogenicity.

To assess the role of arsenic biomethylation in oxidative DNA damage in mice, Michael P. Waalkes, Ph.D., of the National Cancer Institute at the National Institute of Environmental Health Sciences, and colleagues compared oxidative DNA damage in methylation-competent cell lines vs. methylation-deficient cell lines exposed to arsenic.

Exposure of the methylation-competent , but not methylation-deficient cells, was followed by a sharp rise in oxidative DNA damage. Subsequent to the peak of oxidative , methylation-competent cells, more rapidly than methylation-deficient cells, acquired the in vitro characteristics of cancer cells.

Animals have been engineered not to biomethylate arsenic. "Although inorganic arsenicals have not yet been tested for carcinogenic effects in these genetically altered mice, this clearly should be a high priority," the authors write.

In an accompanying editorial, Michael F. Hughes, Ph.D., of the , in Research Triangle Park, N.C., reviews the history of research concerning arsenic methylation and its role in carcinogenesis. He notes that future investigations will need to determine whether arsenic-induced oxidative stress contributes to arsenic-induced toxicity and carcinogenesis by affecting cell signaling pathways and/or apoptosis.

Source: Journal of the National Cancer Institute (news : web)

Related Stories

Recommended for you

Targeted drug shows promise in rare advanced kidney cancer

June 23, 2017

Some patients with a form of advanced kidney cancer that carries a poor prognosis benefited from an experimental drug targeted to an abnormal genetic pathway causing cancerous growth, according to research led by a Dana-Farber ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.