A RANK insider resolving the enigma of the fever chart

November 25, 2009

Mammals have evolved a complex system for controlling bone remodeling. Babies require calcium for healthy bones and they obtain it from their mother's milk. Nursing mothers release calcium from their bones. Surprisingly, however, the same system also plays a key part in the control of fever and of female body temperature. This finding is reported in a paper in this week's issue of Nature from Josef Penninger's group at the IMBA in Vienna, Austria.

The so-called RANK protein and the molecule that binds to it, the RANK ligand or RANKL, form a focus of the work of Josef Penninger, director of the Institute of Molecular Biotechnology (IMBA) in Vienna. In 1999 his group deleted the RANKL gene from mice and showed that the RANK/RANKL system was the "master regulator" governing (Kong et al. 1999 Nature 402, 304-309). The work provided the fist genetic proof for a completely new and rational treatment for , one of the most serious public health problems for older women. The results of phase III clinical trials for a human antibody to RANKL have recently been published (see Cummings et al. 2009, New Eng. J. Med. 361, 756-765) and, pending approval by the authorities, it is conceivable that this antibody will soon be made widely available for osteoporosis treatment.

Considering that such treatments might be of potential benefit to millions of patients, it is important to understand any possible side-effects and in this regard the old observation (see Kartsogiannis et al. 1999, Bone 25, 525-534) that RANKL is also expressed in the brain is highly interesting. The function of RANK and RANKL in the brain was completely unknown and forms the basis of Penninger's latest work. To investigate it, Reiko Hanada - an endocrinologist and Postdoc in Penninger's group - injected RANKL into mice and rats, intending to look for effects on behaviour. As Penninger says, "in principle the injections could have resulted in changes to the animals' intelligence or memory or in subtle behavioural alterations that we could never have detected. But we were lucky. The results were dramatic and obvious - the animals stopped moving and developed really high temperatures."

That this was not mere coincidence was suggested by the observation that RANK and RANKL are not present in all areas of the brain. Rather, the proteins were found to be restricted to areas that other groups had previously implicated in the control of body temperature. And Penninger's group showed further that injections of RANKL triggered changes in areas of the brain known to be involved in the fever response, through which mammals increase their body temperature to fight infection. Unlike normal mice, mice that had been engineered to lack RANK in the brain did not respond to simulated infections by raising their body temperature although they appeared otherwise normal. Taken together, these results show that RANK and its ligand are involved in the regulation of the body's fever response to fight infections.

Because Penninger's group had previously shown that RANK and RANKL control the production of milk during pregnancy, it seemed possible that the system might also have an effect on the body temperature of females. Penninger freely concedes that "this was a hunch but one that seemed worth checking." And his speculation turned out to be correct: female - but not male - mice lacking RANK in the brain show a significant increase in body temperature compared with their littermates, at least during daylight hours. As a result, such female mice have much lower differences in body temperature between day and night. In a final experiment, this effect was revealed to be at least partially the result of sex hormones released from the ovaries.

Because the experimental work was performed in mice and rats, it seemed extremely likely that the results would be relevant to other mammals, including man. Proof that this is the case arose from a chance lunchtime meeting at a conference, during which Penninger learned of a family whose children had defects in the RANK gene. As predicted by Penninger's work, these children showed much lower fever responses to infection. Even when they contracted pneumonia, their scarcely rose.

Penninger's data link bone metabolism to the control of temperature during infection and, even less expectedly, to the gender-specific control of body temperature. Although any explanation for the difference between males and females is still speculation, Penninger notes that "the RANK/RANKL system is intricately involved with reproductive biology, transferring from mothers' bones to their children. Perhaps the changes in female body temperature controlled by RANK and its ligand are also related in some way to reproduction or to human fertility." As an example, it is conceivable that the RANK/RANKL system may be responsible for the sudden bursts of high temperature associated with hormonal changes - and with osteoporosis - in older women.

The elegant experiments reported in the present paper were performed at the IMBA in close collaboration with groups at the Medical University of Vienna as well as in Berlin and in Japan - Penninger acknowledges in particular the contribution of Shuh Narumiya, "whose expertise on fever was crucial to our understanding". The work also demonstrates the importance of mouse genetics: the findings could not have arisen from work on isolated cell lines. Penninger himself retains a childlike sense of wonder that "one little mouse" - the RANKL deletion his group published a decade ago - "should have given rise both to a scientifically based treatment for osteoporosis and to new and exciting speculations on human reproductive biology, with all their potential therapeutic implications."

Source: Research Institute of Molecular Pathology

Related Stories

Recommended for you

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.