Researchers identify gene that spurs deadly brain cancer

December 3, 2009

Howard Hughes Medical Institute (HHMI) researchers have identified a new factor that is necessary for the development of many forms of medulloblastoma, the most common type of malignant childhood brain cancer.

HHMI investigator Huda Y. Zoghbi and colleagues at Baylor College of Medicine prevented medulloblastoma from developing in mice by shutting down production of the protein Atoh1 in susceptible . The team's findings, reported in the December 4, 2009, issue of Science, suggest Atoh1 may be a new target for medulloblastoma treatment.

"When we cloned the gene for Atoh1 in 1996, we had no clue that it had any medical relevance," said Zoghbi, a neuroscientist and neurologist. "Now we know that it's critical for many medical issues, the most recent one being this common childhood cancer."

Atoh1 (also known as Math1) is a transcription factor that works in the nuclei of cells to keep certain genes switched on. It is evolutionarily ancient, appearing in slightly varying forms in various species, from to humans. In cells where Atoh1 is active, it seems to be switched on only during , when cells proliferate rapidly to fill out the various parts of the .

However, in the region of the known as the cerebellum, Atoh1 is active after birth in the fast-dividing granule neuron precursor (GNPs) cells that eventually stop dividing and become mature granule neurons. "The cerebellar granule neurons are unique in that most of their development happens after birth, both in mice and humans," Zoghbi said.

A few years ago, experiments done in several laboratories hinted that Atoh1 might be required to keep GNPs in their fast-dividing state and make them more susceptible to developing into medulloblastoma tumors.

"The question for us was whether we could really prove, not just in the cell culture dish or in microarrays but in animals, that Atoh1 plays this role in medulloblastoma," Zoghbi said.

Ordinarily, to begin to discern the function of a gene such as Atoh1, researchers would engineer a strain of mice that lack the gene. But that had been tried in the 1990s, and the results were less than satisfying. Researchers found that Atoh1-knockout mice failed to develop properly in the womb, and died at birth. To study Atoh1's function after birth, Zoghbi's team, led by postdoctoral researcher Adriano Flora, devised a more advanced technique. First they bred a strain of mice with a genetic off-switch connected to their Atoh1 gene; then they injected a chemical into the brains of healthy newborn mice, to trigger this off-switch and eliminate the production of Atoh1 in GNPs. As a result, the GNPs immediately stopped proliferating and started maturing into granule neurons.

That result showed that Atoh1 helped keep GNPs in their ever-dividing state. Further experiments revealed that Atoh1 revs up GNPs by switching on a gene called Gli2, a well-known member of the Sonic Hedgehog signaling pathway that helps cells divide. The Sonic Hedgehog pathway is also inappropriately switched on in many cancers, including medulloblastoma.

"At this point we asked whether we could affect the development of medulloblastoma in mice by shutting down Atoh1," Zoghbi said.

To find out, the team applied their local Atoh1-shutdown technique to a special strain of mice with a specific genetic mutation that makes them develop medulloblastoma. In these , a mutant gene is switched on after birth, sending the Sonic Hedgehog signaling pathway into overdrive, causing precancerous lesions and tumors in the cerebellum. But when Zoghbi's team switched off Atoh1, these cancerous changes never occurred.

Establishing Atoh1 as a key player in the origin of medulloblastoma makes it a potential target for new drug treatments, Zoghbi said. But to Zoghbi, an important next step is to determine whether the protein is still needed to keep tumors growing after they've become established: "If we allow these tumors to develop, and then we take away Atoh1, would that make a difference?" Her lab and others are also now racing to determine what keeps Atoh1 inappropriately switched on in medulloblastoma cells, and what normally switches it off.

Zoghbi emphasized that she originally took up the study of Atoh1 as an exercise in pure biology, with no idea that it would have relevance to disease. "That just underscores the tremendous importance of doing science for science's sake," she said.

Source: Howard Hughes Medical Institute (news : web)

Related Stories

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.