Scientists Uncover Protective Mechanism Against Liver Cancer

December 14, 2009 By Steve Benowitz,

(PhysOrg.com) -- A team of scientists from the UC San Diego School of Medicine and Osaka University in Japan have identified a protein switch that helps prevent liver damage, including inflammation, fibrosis and cancer. The findings suggest that a better understanding of how the protein, TAK1, works could lead to new insights into the development of liver disease and cancer.

"TAK1 appears to be a master regulator of ," said David A. Brenner, MD, professor of medicine and Dean of the UC San Diego School of Medicine. He and Ekihiro Seki, MD, PhD, assistant research scientist in the Department of Medicine, led the work. "Understanding its role in liver disease and cancer may eventually enable us to devise new therapeutic strategies." Their study appears on line the week of December 14 in advance of publication in the journal .

TAK1 is a kinase, a type of signaling protein involved in regulating various cell activities, including cell growth. Researchers have known that TAK1 activates two specific proteins, NF-kappaB and JNK, which are both involved in immunity, inflammation, programmed cell death and cancer. But NF-kappaB helps protect liver cells from dying and protects against cancer development. In contrast, JNK promotes cell death and cancer.

However, it has been unclear whether TAK1 promotes or prevents the development of . To find out, Seki, Brenner and their group created a mouse model in which liver cells lacked the gene Tak1, which makes the TAK1 protein. In a series of experiments, they found a high rate of liver cell death in young animals lacking TAK1. The animals' livers then went into overdrive, producing too many liver cells to make up for the loss and causing liver damage, including inflammation and fibrosis - liver scarring - and eventually, cancer.

According to Seki, the study is the first to demonstrate the role of TAK1 in cancer development, and strongly suggests that the protein also contributes to cancer development in other organs. In addition, the liver cancer mouse model that the team developed is associated with sustained liver inflammation and fibrosis - key features of human liver cancer - and should be useful in investigating whether fibrosis influences liver cancer development.

"We can also use the model to test whether a potential cancer drug or therapy affects both fibrosis and cancer, or either one," Seki said. "This study will open a new therapeutic potential targeting the expression of TAK1 for ."

Source: University of California - San Diego (news : web)

Related Stories

Recommended for you

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

Workouts may boost life span after breast cancer

January 22, 2018
(HealthDay)—Longer survival after breast cancer may be as simple as staying fit, new research shows.

Cancer patients who tell their life story find more peace, less depression

January 22, 2018
Fifteen years ago, University of Wisconsin–Madison researcher Meg Wise began interviewing cancer patients nearing the end of life about how they were living with their diagnosis. She was surprised to find that many asked ...

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.