Functional connection between hippocampus and cortex modulates anxiety

January 27, 2010

A new study demonstrates that cooperation between the hippocampus, best known for its critical role in learning and memory, and a principal downstream cortical target modulates anxiety-related behaviors in mice. The research, published by Cell Press in the January 28th issue of the journal Neuron, provides intriguing insight into how anxiety is processed in the brain and may help to explain what governs anxiety-related behaviors.

Recent research has linked a specific region of the , called the ventral hippocampus (vHPC), with anxiety-related behaviors. "While we have known for some time that the vHPC plays a key role in anxiety-like behaviors in rodents, how it does so was unclear," explains senior study author, Dr. Joshua A. Gordon from the Department of Psychiatry at Columbia University. "We wondered whether it might influence anxiety by interacting with other regions thought to be important."

Dr. Gordon and colleagues tested this hypothesis by recording electrical activity from the vHPC and the medial prefrontal cortex (mPFC) in mice as they explored different environments, some of which were known to elicit anxiety. The mPFC was of interest because it was previously shown to play an important role in anxiety and it receives direct input from the vHPC. The researchers looked for a synchronization of brain activity between the brain regions because this is a sign of information transfer or, to put it more simply, that one brain region is talking and the other is listening.

As expected given the fact that they are anatomically connected, brain activity within the vHPC and mPFC were relatively closely synchronized in all environments that the mice explored. Exposure to environments known to generate anxiety increased this synchronization. Specifically, in the theta-frequency (4-12 Hz) range was affected by anxiety, consistent with previous reports suggesting that theta-frequency synchrony typically mediates communication between the hippocampus and other brain regions. Along with the increase in synchrony, there was also an overall increase in theta-frequency activity in the mPFC that appeared to be involved in the inhibition of exploratory behavior, an anxiety-related response in mice. Interestingly, mice genetically engineered to exhibit increased anxiety exhibited larger theta increases than normal mice.

The results are the first concrete demonstration that the vHPC and the mPFC cooperate during anxiety. "Our findings suggest that the vHPC sends the mPFC large-scale information about the emotional salience of the environment, which allows the mPFC to recognize the environment as threatening," says Dr. Gordon. "The mPFC may in turn modulate other brain areas, such as the amygdala, to produce appropriate defensive and anxiety-related behaviors." The authors point out that additional studies are needed to further explore the significance of the vHPC-mPFC connection and to determine whether similar circuits are operating in humans with disorders.

More information: Adhikari et al.: “Synchronized Activity between the Ventral Hippocampus and the Medial Prefrontal Cortex during Anxiety.” Publishing in Neuron 65, 257-269, January 28, 2010. DOI:10.1016/j.neuron.2009.12.002

Related Stories

Recommended for you

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

New study reveals contrasts in how groups of neurons function during decision making

July 19, 2017
By training mice to perform a sound identification task in a virtual reality maze, researchers at Harvard Medical School and the Istituto Italiano di Tecnologia (IIT) have identified striking contrasts in how groups of neurons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.