Mayo Clinic and IBM advance early detection of brain aneurysms

January 25, 2010, Mayo Clinic

Preventing deadly ruptures of the blood vessels in the brain is the aim of a new Mayo Clinic project to help radiologists detect aneurysms with far greater speed and accuracy. The new method uses analytics technology developed by the Mayo and IBM collaboration, Medical Imaging Informatics Innovation Center and has proven a 95 percent accuracy rate in detecting aneurysms, compared with 70 percent for manual interpretation. Project findings were reported in the Journal of Digital Imaging (published online Nov. 24, 2009).

Already saving patients' lives, the project has examined more than 15 million images from thousands of patients since the project began in early July. It uses technology that combines advanced imaging with analytics to highlight likely aneurysms for faster detection. This helps radiologists identify them before they result in brain hemorrhage or . In the future, Mayo Clinic expects to use the same approach for other radiology detection tests such as the diagnosis of cancer or vessel anomalies in other parts of the body.

"This fully automatic scheme is significant in helping radiologists detect aneurysms in magnetic resonance angiography exams," says Mayo radiologist Bradley Erickson, M.D., senior author of the study and co-director of the Informatics Innovation Center at Mayo Clinic.

One out of 50 people in the United States has an unruptured -- an abnormal outward bulging in the blood vessels in the brain -- and about 40 percent of all people who have a ruptured brain aneurysm will die as a result.

Traditionally, a patient suspected of having a brain aneurysm due to a stroke, or family history would undergo an invasive test using a catheter that injects dye into the body, a technique with risks of neurologic complications. To improve the process of detection using noninvasive magnetic
resonance angiography , Mayo Clinic and IBM worked to create so-called "automatic reads" that run detection algorithms immediately following a scan.

Once images are acquired, they are automatically routed to servers in the Mayo and IBM Medical Imaging Informatics Innovation Center located on the Mayo campus in Rochester, a collaborative research facility that combines advanced computing and image processing to provide faster, more accurate image analysis. There algorithms align and analyze images to locate and mark potential aneurysms -- even very small ones less than 5mm -- so specially trained radiologists can conduct a further and final analysis.

From the time an image is taken to the time it is ready to be read by a radiologist, there often is only a 10-minute window. In that 10 minutes, the new workflow is able to identify images coming off of the scanners and route those related to the head and brain through the special workflow which then conducts automated aneurysm detection. On average, this can be done in three to five minutes, improving efficiency and saving valuable radiologist's time, leading to a quicker diagnosis which is especially important in the case of a serious aneurysm.

"Our joint work with Mayo Clinic on this project taps IBM's deep expertise in high performance computing and applies it to health analytics, enabling us to remove some of the time and efficiency barriers and making imaging an even more valuable preventative screening tool. Enabling broad access to this capability via cloud delivery is the natural next step," said Bill Rapp, IBM's CTO of Healthcare and Life Sciences and co-director of the Medical Imaging Informatics Innovation Center.

Related Stories

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.