A mind at rest strengthens memories, researchers find

January 27, 2010

Our memories are strengthened during periods of rest while we are awake, researchers at New York University have found. The findings, which appear in the latest issue of the journal Neuron, expand our understanding of how memories are boosted—previous studies had shown this process occurs during sleep, but not during times of awake rest.

"Taking a coffee break after class can actually help you retain that information you just learned," explained Lila Davachi, an assistant professor in NYU's Department of Psychology and Center for Neural Science, in whose laboratory the study was conducted. "Your brain wants you to tune out other tasks so you can tune in to what you just learned."

The study, whose lead author was Arielle Tambini, a doctoral candidate in NYU's Graduate School of Arts and Science, focused on consolidation—the period when a memory is stabilized after it is initially created, or encoded. To determine if occurred during periods of awake rest, the researchers imaged the hippocampus, a brain structure known to play a significant role in memory, and cortical regions during periods of awake rest. Previous studies have demonstrated regions of the brain more active during periods of rest, but their function at these times had been unclear.

The NYU experiment tested subjects' associative memory by showing them pairs of images containing a human face and an object (e.g., a beach ball) or a human face and a scene (e.g., a beach) followed by periods of awake rest. Subjects were not informed their memory for these images would later be tested, but, rather, were instructed to rest and simply think about anything that they wanted, but to remain awake during the resting periods. The researchers used (fMRI) to gauge activity in the hippocampus and cortical regions during the task and during the ensuing rest period.

The experiment yielded two noteworthy results. First, the researchers found that during rest after the study experience (after the visuals were shown), there was a significant correlation between brain activity in the subjects' hippocampus and cortical regions that were active during the initial encoding of each stimulus pair. However, this boost in brain correlations was only seen following experiences that were later memorable suggesting these parts of the brain act in tandem for a purpose—to consolidate memories during rest. Second, when examining each subject individually, it was found that subjects who had greater resting correlations between the hippocampus and cortex, also exhibited better performance on a subsequent associative memory test and those whose brain correlations were weaker, had worse memory —in other words, the greater the activity in and cortical regions, the stronger the memory.

"Your is working for you when you're resting, so rest is important for memory and cognitive function," Davachi observed. "This is something we don't appreciate much, especially when today's information technologies keep us working round-the-clock."

Related Stories

Recommended for you

Touching helps build the sexual brain

September 21, 2017
Hormones or sexual experience? Which of these is crucial for the onset of puberty? It seems that when rats are touched on their genitals, their brain changes and puberty accelerates. In a new study publishing September 21 ...

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

Neuron types in brain are defined by gene activity shaping their communication patterns

September 21, 2017
In a major step forward in research, scientists at Cold Spring Harbor Laboratory (CSHL) today publish in Cell a discovery about the molecular-genetic basis of neuronal cell types. Neurons are the basic building blocks that ...

Your neurons register familiar faces, whether you notice them or not

September 21, 2017
When people see an image of a person they recognize—the famous tennis player Roger Federer or actress Halle Berry, for instance—particular cells light up in the brain. Now, researchers reporting in Current Biology on ...

Highly precise wiring in the cerebral cortex

September 21, 2017
Our brains house extremely complex neuronal circuits whose detailed structures are still largely unknown. This is especially true for the cerebral cortex of mammals, where, among other things, vision, thoughts or spatial ...

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.