New gene discovery could help to prevent blindness

February 11, 2010

Scientists have uncovered a new gene that could help save the sight of patients with a type of inherited blindness.

The international research team led by the University of Leeds found that the TSPAN12 gene is faulty in patients with a disease known as FEVR (Familial Exudative Vitreoretinopathy), which affects the development of the eye.

While many FEVR patients are registered blind or visually impaired, members of the same family may carry the without showing any symptoms. It is hoped that by screening these family members for TSPAN12 mutations, doctors may be able to catch FEVR early on and treat patients before they start to lose their sight. It will also broaden their understanding of other more common blinding disorders.

Dr Carmel Toomes, of the Leeds Institute of Molecular Medicine who led the research, said: "This discovery will have an immediate impact on the treatment and counselling of some FEVR patients by allowing us to identify family members who carry the mutated gene before any retinal damage has occurred. This decreases their chances of going blind because if a patient is diagnosed early enough their sight can often be saved by surgical intervention."

TSPAN12 is thought to cause FEVR by disrupting the cell signals required for the normal development of in the retina at the back of the eye.

This study, which was funded by The Royal Society and the Wellcome Trust, looked at 70 FEVR patients who had tested negative for the three genes already known to cause the disease. Mutations in the TSPAN12 gene, which is located on chromosome 7, were found in 10% of these patients.

As well as being an important piece in the FEVR puzzle, this latest discovery will help scientists to understand other blinding disorders including age-related and - two of the leading causes of blindness in the developed world.

"Our research highlights how studying rare inherited disorders such as FEVR can help us identify the and pathways involved in the basic cellular processes underlying more common diseases," Dr Toomes added.

"We hope that by learning more about blood vessel formation in FEVR we will gain clues that may lead to new treatments for these conditions."

The research will be published in the American Journal of Human Genetics on 12th February.

More information: Poulter JA et al. Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy. Am J Hum Genet 2010;86:248-253.

Related Stories

Recommended for you

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

Study reveals an ancient Achilles heel in the human genome

September 21, 2017
In a major study published today, researchers at deCODE genetics use whole-genome data from 14,000 people from across the population of Iceland, including 1500 sets of parents and children, to provide the most detailed portrait ...

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.