New gene discovery could help to prevent blindness

February 11, 2010

Scientists have uncovered a new gene that could help save the sight of patients with a type of inherited blindness.

The international research team led by the University of Leeds found that the TSPAN12 gene is faulty in patients with a disease known as FEVR (Familial Exudative Vitreoretinopathy), which affects the development of the eye.

While many FEVR patients are registered blind or visually impaired, members of the same family may carry the without showing any symptoms. It is hoped that by screening these family members for TSPAN12 mutations, doctors may be able to catch FEVR early on and treat patients before they start to lose their sight. It will also broaden their understanding of other more common blinding disorders.

Dr Carmel Toomes, of the Leeds Institute of Molecular Medicine who led the research, said: "This discovery will have an immediate impact on the treatment and counselling of some FEVR patients by allowing us to identify family members who carry the mutated gene before any retinal damage has occurred. This decreases their chances of going blind because if a patient is diagnosed early enough their sight can often be saved by surgical intervention."

TSPAN12 is thought to cause FEVR by disrupting the cell signals required for the normal development of in the retina at the back of the eye.

This study, which was funded by The Royal Society and the Wellcome Trust, looked at 70 FEVR patients who had tested negative for the three genes already known to cause the disease. Mutations in the TSPAN12 gene, which is located on chromosome 7, were found in 10% of these patients.

As well as being an important piece in the FEVR puzzle, this latest discovery will help scientists to understand other blinding disorders including age-related and - two of the leading causes of blindness in the developed world.

"Our research highlights how studying rare inherited disorders such as FEVR can help us identify the and pathways involved in the basic cellular processes underlying more common diseases," Dr Toomes added.

"We hope that by learning more about blood vessel formation in FEVR we will gain clues that may lead to new treatments for these conditions."

The research will be published in the American Journal of Human Genetics on 12th February.

More information: Poulter JA et al. Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy. Am J Hum Genet 2010;86:248-253.

Related Stories

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.