A population genetics approach identifies susceptibility variants for viral infections

February 19, 2010

Viruses have played a role in shaping human genetic variability, according to a study published February 19 in the open-access journal PLoS Genetics. The researchers, from the Don C. Gnocchi and Eugenio Medea Scientific Institutes, the University of Milan and the Politecnico di Milano, Italy, used population genetics approaches to identify gene variants that augment susceptibility to viral infections or protect from such infections.

Viruses have represented a threat to human populations throughout history and still account for a large proportion of disease and death worldwide. The identification of gene variants that modulate the susceptibility to viral infections is thus central to the development of novel therapeutic approaches and vaccines. Due to the long relationship between humans and viruses, gene variants conferring increased resistance to these pathogens have likely been targeted by natural selection. This concept was exploited to identify variants in the that modulate susceptibility to infection or the severity of the ensuing disease.

In particular, the authors based their study on the idea that populations living in different geographic areas have been exposed to different viral loads and therefore have been subjected to a variable virus-driven selective pressure. By analysing for 52 populations distributed worldwide, the authors identified variants that display higher frequency where the viral load is also high. Using this approach, they found 139 human genes that modulate susceptibility to ; the protein products of several of these genes interact with one another and often with viral components.

The study relied on predictions generated in silico; therefore, experimental validation of these results will be required. The authors conclude that approaches similar to the one they applied might be used to identify susceptibility variants for infections transmitted by pathogens other than viruses.

More information: Fumagalli M, Pozzoli U, Cagliani R, Comi GP, Bresolin N, et al. (2010) Genome-Wide Identification of Susceptibility Alleles for Viral Infections through a Population Genetics Approach. PLoS Genet 6(2): e1000849. doi:10.1371/journal.pgen.1000849

Related Stories

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.