New tool illuminates connections between stem cells and cancer

February 21, 2010

Researchers have a new tool to understand how cancers grow -- and with it a new opportunity to identify novel cancer drugs. They've been able to break apart human prostate tissue, extract the stem cells in that tissue, and alter those cells genetically so that they spur cancer.

Owen Witte, a Howard Hughes Medical Institute investigator at the University of California, Los Angeles, presented the findings on February 20, 2010, at the annual meeting of the American Association for the Advancement of Science.

Many tissues contain pools of stem cells that replenish the tissue when it's damaged or when changes take place. For instance, stem cells in the skin produce new cells to replace those irreparably damaged by the sun, and stem cells in the breast create milk-producing cells when a woman is pregnant. The hallmark of these stem cells is that they self-renew. This means that in addition to making cells with a specific function, they also make many new stem cells.

Mounting evidence suggests that these self-renewing cells are also tied to cancer. They tend to collect mutations, says Witte, and not much separates tumor cells, with their capacity for unchecked growth, from healthy, tissue-forming stem cells. "These cells have a huge capacity for self-renewal, and when the pathways that control self-renewal are augmented or changed, they can form tumors," says Witte.

Many scientists suspect that although tumors are made up of many cells, only the derived from stem cells contribute to the growth of the tumor. For certain cancers, such as and leukemia, that idea is well established. For others, such as , which Witte studies, the data are not conclusive.

Witte's group has been analyzing the relationship between tissue stem cells and cancer stem cells in the prostate. They have been attacking this problem by dividing mouse prostate tissue into its component cell types, culturing those cells, and then reassembling them to understand how they interact. Now, for the first time, they've accomplished that feat with human tissue. Importantly, they've also engineered specific genetic changes into human prostate stem cells to transform them into cancer cells.

The group is in the early stages of putting the technique to use, but Witte says it offers some distinct advantages for developing new . Cells can be grown directly from a prostate tumor for use in experiments, but without knowing the precise genetics of those cells, scientists may never know why they became cancerous. Drugs that are effective in stopping their growth may not have the same impact on prostate tumors driven by different gene mutations. Starting from prostate , Witte knows exactly which genetic changes have made a cell cancerous.

"Here you can preprogram the genetic buffet, and then evaluate a compound in the face of those specific changes," says Witte.

That precision should speed the development of a new generation of fine-tuned cancer therapies. The new system should give scientists a firmer grasp of the genetic makeup of cells that are affected by particular compounds, and by extension, help clinicians identify the drugs that will best help particular patients. "The field of cancer research has produced a significant number of major new targeted therapies," says Witte. "Now we have to understand how best to use those therapies."

Related Stories

Recommended for you

New study reveals breast cancer cells recycle their own ammonia waste as fuel

October 19, 2017
Breast cancer cells recycle ammonia, a waste byproduct of cell metabolism, and use it as a source of nitrogen to fuel tumor growth, report scientists from Harvard Medical School in the journal Science.

US regulators approve 2nd gene therapy for blood cancer

October 19, 2017
U.S. regulators on Wednesday approved a second gene therapy for a blood cancer, a one-time, custom-made treatment for aggressive lymphoma in adults.

New findings explain how UV rays trigger skin cancer

October 18, 2017
Melanoma, a cancer of skin pigment cells called melanocytes, will strike an estimated 87,110 people in the U.S. in 2017, according to the Centers for Disease Control and Prevention. A fraction of those melanomas come from ...

Drug yields high response rates for lung cancer patients with harsh mutation

October 18, 2017
A targeted therapy resurrected by the Moon Shots Program at The University of Texas MD Anderson Cancer Center has produced unprecedented response rates among patients with metastatic non-small cell lung cancer that carries ...

Possible new immune therapy target in lung cancer

October 18, 2017
A study from Bern University Hospital in collaboration with the University of Bern shows that so-called perivascular-like cells from lung tumors behave abnormally. They not only inadequately support vascular structures, but ...

Many pelvic tumors in women may have common origin—fallopian tubes

October 17, 2017
Most—and possibly all—ovarian cancers start, not in ovaries, but instead in the fallopian tubes attached to them.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.