Researchers find cancer-fighting properties in papaya tea

March 9, 2010, University of Florida

(PhysOrg.com) -- The humble papaya is gaining credibility in Western medicine for anticancer powers that folk cultures have recognized for generations.

University of Florida researcher Dr. Nam Dang, and colleagues in Japan have documented papaya's dramatic anticancer effect against a broad range of lab-grown tumors, including cancers of the cervix, breast, liver, lung and pancreas. The researchers used an extract made from dried papaya leaves, and the anticancer effects were stronger when cells received larger doses of the tea.

In a paper published in the Feb. 17 issue of the Journal of Ethnopharmacology, Dang and his colleagues also documented for the first time that papaya leaf extract boosts the production of key signaling molecules called Th1-type cytokines. This regulation of the immune system, in addition to papaya’s direct antitumor effect on various cancers, suggests possible therapeutic strategies that use the immune system to fight cancers.

The papaya extract did not have any toxic effects on normal cells, avoiding a common and devastating consequence of many regimens. The success of the papaya extract in acting on without toxicity is consistent with reports from indigenous populations in Australia and his native Vietnam, said Dang, a professor of medicine and medical director of the UF Shands Cancer Center Clinical Trials Office.

“Based on what I have seen and heard in a clinical setting, nobody who takes this extract experiences demonstrable toxicity; it seems like you could take it for a long time — as long as it is effective,” he said.

Researchers exposed 10 different types of cancer cell cultures to four strengths of papaya leaf extract and measured the effect after 24 hours. Papaya slowed the growth of tumors in all the cultures.

To identify the mechanism by which papaya checked the growth of the cultures, the team focused on a cell line for T lymphoma. Their results suggested that at least one of the mechanisms employed by the papaya extract is inducing cell death.

In a similar analysis, the team also looked at the effect of papaya extract on the production of antitumor molecules known as cytokines. Papaya was shown to promote the production of Th1-type cytokines, important in the regulation of the immune system. For that reason, the study findings raise the possibility of future use of papaya extract components in immune-related conditions such as inflammation, autoimmune disease and some cancers.

Bharat B. Aggarwal, a researcher at the University of Texas M.D. Anderson Cancer Center in Houston, already is so convinced of papaya’s restorative powers that he has a serving of the fruit every day.

“We have always known that papaya has a lot of interesting things in there,” said Aggarwal, a professor in the center’s department of experimental therapeutics who was not involved in the UF research. Foremost among papaya’s health-promoting agents is papain, papaya’s signature enzyme, which is found in both the fruit and the leaves.

“This paper has not gone too much into identifying the components responsible for the activity, which is just fine. I think that is a good beginning,” Aggarwal said.
Aggarwal also noted that papaya extract’s success in reducing cancer in laboratory cell cultures must next be replicated in animal and human studies.

“I hope Dr. Dang takes it further, because I think we need enthusiastic people like him to move it forward,” Aggarwal said.

Dang and a colleague have applied to patent the process to distill the papaya extract through the University of Tokyo; the next step in the research is to identify the specific compounds in the papaya extract active against the cancer cell lines. For this stage, Dang has partnered with Hendrik Luesch, a fellow UF Shands Cancer Center member and a professor of medicinal chemistry. Luesch is an expert in the identification and synthesis of natural products for medicinal purposes, and recently discovered a coral reef compound that inhibits cancer cell growth in cell lines.

Related Stories

Recommended for you

Researchers identify a mechanism that fuels cancer cells' growth

November 14, 2018
Scientists at the UCLA Jonsson Comprehensive Cancer Center have identified sodium glucose transporter 2, or SGLT2, as a mechanism that lung cancer cells can utilize to obtain glucose, which is key to their survival and promotes ...

A new approach to detecting cancer earlier from blood tests: study

November 14, 2018
Cancer scientists led by principal investigator Dr. Daniel De Carvalho at Princess Margaret Cancer Centre have combined "liquid biopsy", epigenetic alterations and machine learning to develop a blood test to detect and classify ...

New antibody breakthrough to lead the fight against cancer

November 14, 2018
Scientists at the University of Southampton have developed a new antibody that could hold the key to unlocking cancer's defence against the body's immune system.

Photoacoustic imaging may help doctors detect ovarian tumors earlier

November 14, 2018
Ovarian cancer claims the lives of more than 14,000 in the U.S. each year, ranking fifth among cancer deaths in women. A multidisciplinary team at Washington University in St. Louis has found an innovative way to use sound ...

Pancreatic cancer's addiction could be its end

November 13, 2018
Cancer cells are often described as cells "gone bad" or "renegade." New research reveals that in some of the deadliest cases of pancreatic cancer, these rebellious cells have an unexpected addiction. Now, scientists are investigating ...

Solving the mystery of NPM1 in acute myeloid leukemia

November 13, 2018
Although it has long been recognized that mutations of gene NPM1 play an important role in acute myeloid leukemia, no one has determined how the normal and the mutated forms of the protein NPM1 function.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

THoKling
4 / 5 (1) Mar 09, 2010
We've known for years that the immune system is pivotal in fighting cancer, and that a depressed immune system can help trigger the onset of cancer. Vitamin C injections of hundreds of grams have been noted as being effective measures against various cancers by strengthening the immune system.

The use of papaya leaves can potentially be extended past cancer treatment into other diseases caused by immunological disorders.
zafouf
not rated yet Mar 10, 2010
Caution about papaya: Dr. Brostoff, a food intolerance researcher, advises that papaya must be cooked to inactivate the papaya enzymes, because papaya enzyme increases intestinal permeability, which could cause food intolerances. The papaya enzyme in papaya tea is probably not cooked enough to inactivate it.
So papaya tea might actually cause immune system problems.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.