Study links microRNA to shut-down of DNA-repair genes

April 30, 2010

New research shows for the first time that molecules called microRNA can silence genes that protect the genome from cancer-causing mutations.

The study, led by researchers at the Ohio State University Comprehensive Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, shows that microRNA-155 (miR-155) can inhibit the activity of genes that normally correct the damage when the wrong bases are paired in DNA.

The loss or silencing of these genes, which are called mismatch repair genes, causes inherited cancer-susceptibility syndromes and contributes to the progression of colorectal, uterine, ovarian and other cancers.

"This is the first evidence that deregulation of microRNAs can cause genomic instability, a characteristic of ," says principal investigator Dr. Carlo M. Croce, professor of , Immunology and Medical Genetics, and director of Ohio State's Human Cancer Genetics program.

"We discovered that miR-155 targets and downregulates mismatch repair genes and that overexpression of miR-155 results in an increase in genomic alterations that contribute to cancer pathogenesis," he says.

The study was published recently in the and shows the following:

  • Overexpression of miR-155 reduced the expression of the human mismatch repair genes MLH1, MSH2 and MSH6 by 72 percent, 42 percent and 69 percent, respectively, in a cell line.
  • High expression of miR-155 in human colorectal tumors correlates with low expression of MLH1 and MSH2.
  • Human tumors that feature unexplained mismatch repair inactivation showed miR-155 overexpression.
The third finding may explain a colon-cancer conundrum. About five percent of colorectal cancer cases feature a genomic marker called microsatellite instability that signals the loss of mismatch repair ability and the presence of an inherited cancer predisposition condition. These cases also show no expression of mismatch genes. Yet, the genes themselves show no alterations that explain the loss of expression.

"This study describes a totally new mechanism that might explain those cases of colorectal cancer that display microsatellite instability but no mutations or epigenetic inactivation of the mismatch repair genes," says co-author Muller Fabbri, a research scientist with the OSUCCC-James.

Overall, Croce says, "Our findings suggest that miR-155 expression might be an important stratification factor in the prognosis and treatment of cancer patients and provide an additional analytical test for exploring the etiology of microsatellite-instability tumors when the standard tests do not provide a conclusive diagnosis."

Related Stories

Recommended for you

An architect gene is involved in the assimilation of breast milk

October 17, 2017
A family of "architect" genes called Hox coordinates the formation of organs and limbs during embryonic life. Geneticists from the University of Geneva (UNIGE) and the Swiss Federal Institute of Technology in Lausanne (EPFL), ...

Study identifies genes responsible for diversity of human skin colors

October 12, 2017
Human populations feature a broad palette of skin tones. But until now, few genes have been shown to contribute to normal variation in skin color, and these had primarily been discovered through studies of European populations.

Genes critical for hearing identified

October 12, 2017
Fifty-two previously unidentified genes that are critical for hearing have been found by testing over 3,000 mouse genes. The newly discovered genes will provide insights into the causes of hearing loss in humans, say scientists ...

Team completes atlas of human DNA differences that influence gene expression

October 11, 2017
Researchers funded by the National Institutes of Health (NIH) have completed a detailed atlas documenting the stretches of human DNA that influence gene expression - a key way in which a person's genome gives rise to an observable ...

Genetic advance for male birth control

October 10, 2017
When it comes to birth control, many males turn to two options: condoms or vasectomies. While the two choices are effective, both methods merely focus on blocking the transportation of sperm.

Researchers uncover new congenital heart disease genes

October 9, 2017
Approximately one in every 100 babies is born with congenital heart disease (CHD), and CHD remains the leading cause of mortality from birth defects. Although advancements in surgery and care have improved rates of survival ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.