Biomedical Researchers Develop Device to Predict Wound Healing

May 25, 2010

(PhysOrg.com) -- The new device can change the current landscape of chronic wound management.

Complex wounds affect more patients in the United States than heart attack and stroke combined, and five to seven million Americans with complex wounds account for over $20 billion in healthcare expenditures. About 150,000 amputations a year result from complex wounds, while about 80,000 are attributed to diabetes and . There are currently no established methods for early detection of wound healing, or for precise identification of healing progress. Wound size is the only accepted indicator despite its variability and the fact that is reflects only what is happening on the surface.

A new breakthrough device developed by researchers can change the current landscape of chronic wound management. Researchers at Drexel University’s School of Biomedical Engineering, Science and Health Systems developed a prototype device that measures the level of oxygenated and deoxygenated within and under a wound and compares it to a control/non-wound site of the same patient. Based on a human study at the Wound Clinic of the Drexel College of Medicine, the time course of oxygenated hemoglobin change was found to be a strong indicator of wound healing.

Diffuse Near-Infrared Spectroscopy allows tissue to be non-invasively analyzed by measuring its optical absorption and scattering coefficients. A “diagnostic window” exists at near (650 -900 nm) allowing determination of tissue at significant depths, because light is able to penetrate several centimeters into tissue due to low absorption of hemoglobin. The absorption spectra of oxy-hemoglobin and deoxy-hemoglobin are distinct at near-infrared wavelengths and with proper instrumentation the absolute concentrations of each can be determined.

A device prototype has been developed and tested over the course of several years. The device is controlled by software from a laptop computer and can move from patient to patient in a busy clinical setting. Measurements can be taken at any spot within or around the wound and take seconds to complete. Results are displayed on the computer screen almost instantly following the measurement. Improved prototypes are being designed. In its final stages the device will become more portable.

Advantages of the Drexel technology:

• Fast quantitative method for characterizing diabetic and pressure ulcers.
• Quantitative assessment of ischemic tissue in a broad variety of clinical applications.
• Ability to predict due to therapy at least 50 percent earlier (four weeks as opposed to 8 weeks or more) compared to conventional methods.

Funding for the project is supported through a Coulter Foundation Translational Research grant. The Coulter Foundation is a private, nonprofit foundation dedicated to supporting biomedical engineering translational research that addresses unmet health care needs.

Related Stories

Recommended for you

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

Large variety of microbial communities found to live along female reproductive tract

October 18, 2017
(Medical Xpress)—A large team of researchers from China (and one each from Norway and Denmark) has found that the female reproductive tract is host to a far richer microbial community than has been thought. In their paper ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.