3-D model of blood flow by supercomputer predicts heart attacks

May 20, 2010, Ecole Polytechnique Fédérale de Lausanne
The left coronary arteries show the ramification of vessels and the red blood cells flowing in one sub-region. The longest coronary arteries have a size of few centimeters and the red blood cells have a linear size of about 10 microns. Credit: EPFL

EPFL Laboratory of Multiscale Modeling of Materials, in Switzerland, has developed a flowing 3D model of the cardiovascular system that should allow for predictions of certain heart diseases before they become dangerous.

The supercomputer Cadmos, installed at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in August of 2009, has bared one of its first fruits: the Laboratory of Multiscale.

Modeling of Materials has recently developed a computer program the accurately models the complex system of blood flow in the heart for individuals at an unheard-of precision of ten millionths of a meter or ten microns. These individual-specific models—which take up to six hours using a supercomputer—will allow for a detailed study of the and lead to early predictions of heart conditions such as arteriosclerosis, or the hardening of arteries that often leads to heart attacks. Plans are in the works to develop the program for individual PCs for clinical applications within the next two to three years.

"When studying the blood flow in arteries, one has to take into account a vast number of different fluid interactions that happen on different time scales and of different sizes," explains Simone Melchionna, who heads the project. Based on a detailed heart scan, the simulation juggles over a billion different variables in order to represent a fluid containing ten-million red blood cells. Using another supercomputer based in Juelich (Germany), the research team has achieved even greater precision with their program that allows for the visualization of the interaction of plasma, red blood cells and even micro-particles. "We can evaluate all of the elements and how they interact with each other; move, stagnate and whirl and turn over each other," Melchionna adds.

This precision will allow for the detection of the first signs of arteriosclerosis when the plaques begin to form on the artery's walls and disturb . This condition, which creates dangerous rigidity and blockage of these vital vessels, is the main cause of heart attacks—responsible for 12% of deaths in the world. This mortality rate increases to 16% in richer countries, where greasy and cholesterol rich foods are more common. Early detection of the forces leading to arteriosclerosis is one element in the strategy developed by EPFL and the universities of Geneva and Lausanne to rationalize the investment in a of 16,000 microprocessors—the equivalent of 8,000 PCs.

Related Stories

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.