Diagnosing heart attacks may be a lick and a click away

May 3, 2010, Rice University
Nano-Bio-Chips developed by Rice University scientists for rapid diagnosis of heart attacks are in human trials at Houston's Michael E. DeBakey VA Medical Center. The trial is being held in collaboration with Rice and Baylor College of Medicine. Credit: Jeff Fitlow/Rice University

A diagnostic tool developed by Rice University scientists to detect heart attacks using a person's saliva is being tested at the Michael E. DeBakey VA Medical Center (MEDVAMC) in collaboration with Baylor College of Medicine (BCM) in Houston.

John T. McDevitt, professor of chemistry and bioengineering at Rice, and his team of researchers at Rice's BioScience Research Collaborative have developed a microchip sensor, the Nano-Bio-Chip, which processes and yields on-the-spot results. McDevitt intends to establish Houston as the hub of a biomarker highway where Nano-Bio-Chips will be configured to diagnose a variety of diseases.

"The device works by analyzing saliva, looking for cardiac biomarkers of injury implicated in the ," said Dr. Biykem Bozkurt, professor of medicine at BCM.

"We find salivary tests, when combined with electrocardiograms (ECG), can provide more accurate information than the ECG alone for patients with chest pain," McDevitt said. "Saliva-based tests have the potential to quickly diagnose heart-attack victims as well as to find false alarms."

Typically, when a heart attack occurs, emergency medical technicians or hospital staff use an ECG machine to review heart activity. If the ECG is abnormal, the patient is immediately moved to an area to be treated. Unfortunately, ECGs fail to correctly diagnose about a third of patients having a heart attack. These patients are monitored carefully in the emergency room, where further blood tests are used to look for certain biomarkers to verify whether a heart attack has occurred.

"At the DeBakey VA, we follow this same procedure but also include the saliva test to determine whether salivary biomarkers will perform similar to blood markers in diagnosing a heart attack," said Bozkurt, who is also chief of cardiology at the MEDVAMC. "The patients presenting with chest pain are enrolled from the VA emergency room after informed consent and provide a saliva swab as well as blood samples. It is anticipated that saliva will be an alternative or complementary technique to blood drawing for early diagnosis of heart attacks, ultimately for testing in the ambulance before arrival in the emergency room."

Over the next two years, samples from approximately 500 patients who come to the MEDVAMC with chest pain or heart attack-related symptoms will be collected.

To obtain a saliva sample for the Nano-Bio-Chip, health care providers swab a patient's gums with a cotton-tipped stick. The saliva is transferred to the disposable diagnostic microchip. The microchip is then inserted into an analyzer and within a few minutes the saliva sample is checked and results delivered.

Nano-Bio-Chips deliver all the capabilities of a traditional laboratory but do not require expensive instrumentation to get results. Manufactured with techniques pioneered by the microelectronics industry, they have the potential to analyze large amounts of biomarker data at significantly lower cost than traditional tests, McDevitt said.

brings about 5 million patients to U.S. emergency rooms each year, but 80 percent of those patients are not suffering heart attacks. Blood test results can take anywhere from 90 minutes to three hours, and in many cases it may be 12 to 24 hours before patients know whether or not they had a heart attack.

McDevitt said the new test could save lives, time and money by allowing doctors to identify those suffering from a heart attack before administering a battery of costly tests. "We hope to bend down U.S. health care costs through the marriage of electronics with diagnostic devices," he said.

"We believe that, in the future, we may be able to apply the same technology to improve screening for cardiovascular disease and diabetes, to identify problems before someone gets a heart attack," said Dr. Christie Ballantyne, chief of atherosclerosis and vascular medicine and professor of medicine at BCM and director of the Center for Cardiovascular Disease Prevention at the Methodist DeBakey Heart and Vascular Center.

Related Stories

Recommended for you

Iron triggers dangerous infection in lung transplant patients, study finds

February 21, 2018
Researchers at the Stanford University School of Medicine have identified elevated tissue iron as a risk factor for life-threatening fungal infections in lung transplant recipients.

Neuroimaging reveals lasting brain deficits in iron-deficient piglets

February 21, 2018
Iron deficiency in the first four weeks of a piglet's life - equivalent to roughly four months in a human infant - impairs the development of key brain structures, scientists report. The abnormalities remain even after weeks ...

Products derived from plants offer potential as dual-targeting agents for experimental cerebral malaria

February 21, 2018
Malaria, a life-threatening disease usually caused when parasites from the Plasmodium family enter the bloodstream of a person bitten by a parasite-carrying mosquito, is a severe health threat globally, with 200 to 300 million ...

Scientists in Germany improve malaria drug production

February 21, 2018
Scientists in Germany who developed a new way to make a key malaria drug several years ago said Wednesday they have come up with a technique to make the process even more efficient, which should increase global access and ...

Early results from clinical trials not all they're cracked up to be, shows new research

February 21, 2018
When people are suffering from a chronic medical condition, they may place their hope on treatments in clinical trials that show early positive results. However, these results may be grossly exaggerated in more than 1 in ...

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.