Stem-cell disruption induces skull deformity, study shows

May 25, 2010

University of Rochester Medical Center scientists discovered a defect in cellular pathways that provides a new explanation for the earliest stages of abnormal skull development in newborns, known as craniosynostosis.

Mutations of the WNT and FGF signaling pathways set off a cascade of events that regulate bone formation at the stem cell level, according to the article, published May 25, 2010, in the journal Science Signaling.

"Our work contributes to the overall knowledge of the complex system that controls the stem cell fate," said lead author Wei Hsu, Ph.D., associate professor of Biomedical Genetics and Oncology, and an investigator in the URMC Center for Oral Biology. "More specifically, we found that when a certain type of stem cell goes awry, it leads to a new mechanism for craniosynostosis."

Abnormal head shape due to craniosynostosis affects about one in 2,500 individuals. It can restrict normal brain growth and result in neurodevelopment delays and elevated intracranial pressure. The chief cause, which is already known, is a defect in osteoblasts, the type of cells most important for the making of bone.

But until now scientists did not know about a second mechanism for craniosynostosis, a result of a disruption among the earliest forms of cells. Hsu's lab made the discovery in a study in mice, which have the same skull structure as humans.

Eight bones make up the cranium. Initially these individual plates of are separated by gaps called sutures. In humans the bone plates gradually fuse together, starting at birth and ending in people's 30s.

Two key events takes place during the first 18 months of life that are critical to the proper formation of bone. The first, called intramembranous ossification, is responsible for final development of the skull bones, jaw-bones and collarbones. The other process, called endochondral ossification, controls development of the long bones in the body.

During intramembranous ossification a type of stem cell - the mesenchymal cell - must transform into bone-forming osteoblast cells, which deposit the bone matrix. The majority of bone is made after the matrix hardens and entraps the osteoblasts.

Hsu's group discovered that the WNT and FGF signaling pathways determine the fate of the mesenchymal stem cells. And, when these pathways are altered, the mesenchymal cells change to chondrocytes and end up inducing endochondral ossification instead of intramembranous ossification. As a result of this switch, the skull sutures close prematurely.

While endochrondal ossification is essential to the development of cartilage and long bones, it has not been shown to play a role in normal skull development. Hsu's research, therefore, implies that endochondral ossification is a culprit for deformities.

"There have been some reports of peculiar chondrocytes present in prematurely closed sutures," Hsu said, "and based on our research it is reasonable to believe they might be there for a reason."

Alterations of the mesenchymal stem cells also have been associated with osteoarthritis, osteoporosis and osteoponia, and mutations in either the WNT or FGF pathways are often detected in skeletal disorders and cancer. Thus, additional research might shed light on the complex properties of , and how they are transformed during the disease process, Hsu said.

Related Stories

Recommended for you

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.