UGA researchers use patented SERS technique to rapidly, accurately detect rotavirus strain

May 13, 2010, University of Georgia

Using nanotechnology and a patented signal enhancing technique developed at the University of Georgia, UGA researchers have discovered a rapid, sensitive and cost-effective method to detect and identify a number of rotavirus strains and genotypes in less than one minute with greater than 96 percent accuracy.

In their study, Ralph A. Tripp and Jeremy D. Driskell, researchers in the College of Veterinary Medicine's department of infectious diseases, and Yiping Zhao and Richard Dluhy, researchers in the Franklin College of Arts and Sciences departments of physics and chemistry, utilized surface enhanced Raman scattering, or SERS, to detect and quantify Group A rotaviruses.

Group A rotaviruses are the leading cause of severe gastroenteritis in infants and young children, infecting approximately 130 million children annually. Rotavirus infections are responsible for approximately 2 million hospitalizations and more than 500,000 deaths each year, and are particularly burdensome on health care resources in developing countries. Clinical diagnostic tests currently used to detect rotavirus do not provide information on the genotypes, which is essential for aiding public health officials in monitoring epidemics, identifying novel strains and controlling disease.

Tripp and Driskell worked with the most commonly identified strains of , provided by Carl D. Kirkwood of the Murdoch Childrens Research Institute, at the Royal Children's Hospital in Parkville, Australia, to show that SERS can detect and identify numerous virus strains and genotypes in less than 30 seconds, without the need to amplify the analyte for detection. Their technique requires no or minimal specimen preparation for analysis and uses minimal volumes of analyte.

"Nanotechnology has provided a considerable advance in diagnostic and prognostic capabilities," noted Tripp. "The technology strengthens and expands current diagnostic applications by providing a means to enhance existing technology for novel applications such as SERS detection of viruses. The field of diagnostics and biosensing has been pushed dramatically forward by our ability to now amplify and detect the molecular fingerprints of pathogens as opposed to amplifying the pathogens for detection."

The findings from the UGA research team are important as most enteric viruses produce diseases that are not readily distinct from other pathogens and diagnostics are generally limited to attempts at viral culture, antibody-mediated antigen detection and polymerase chain reaction. These methods are cumbersome, often have limited breadth and sensitivity in detection and/or offer limited information on genotype.

SERS works by measuring the change in frequency of a near-infrared laser as it scatters off viral nucleic acid and protein components. This change in frequency, named the Raman shift for the scientist who discovered it in 1928, is as distinct as a fingerprint.

More information: The study was published in PLoS ONE on April 19.

Related Stories

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.