Understanding the Alzheimer's-Parkinson's link

June 14, 2010 by Tom Vasich, UC Irvine
In transgenic mouse models of the Lewy body variant of Alzheimer’s, Parkinson’s-related alpha-synuclein proteins (green) and the beta-amyloid protein plaques (red) and tau protein tangles (blue) associated with Alzheimer’s aggregate into what are called Lewy bodies. Mathew Blurton-Jones / UCI

(PhysOrg.com) -- UCI researchers find the neurodegenerative combo of Alzheimer's and Parkinson's diseases accelerates dementia.

On their own, Alzheimer’s disease and Parkinson’s disease cause the slow regression of mental and physical abilities. But when the proteins behind these neurodegenerative disorders join forces, a dramatic decline in cognition often results, researchers with UC Irvine’s Institute for Memory Impairments and Neurological Disorders have found.

Little has been known about how these disease-inducing proteins interact and influence mental processes, but a group headed by Frank LaFerla, Chancellor’s Professor of neurobiology & behavior and UCI MIND director, is beginning to change that.

Their work is generating hope for people with the Lewy body variant of Alzheimer’s, in which Parkinson’s symptoms are also present. Nearly half of all Alzheimer’s patients have this variant, and about 1.3 million of them in the U.S. suffer from Lewy body dementia.

To learn more about this Alzheimer’s-Parkinson’s phenomenon, the LaFerla group created the first genetically modified, or “transgenic,” mouse model of this Lewy body variant of Alzheimer’s. As with affected patients, this model develops the beta-amyloid protein plaques and tau protein tangles typical of Alzheimer’s while also accumulating Parkinson’s-related alpha-synuclein proteins. These proteins aggregate into what are called Lewy bodies, named after Friederich H. Lewy, the scientist who discovered them.

“Mouse models such as this are opening a window to the complex biological activity that underpins neurodegenerative diseases like Alzheimer’s and Parkinson’s,” LaFerla says. “With enhanced research methods, we’re increasing our abilities to discover treatments.”

Using the new mouse model, he and UCI researchers Lani Clinton, Mathew Blurton-Jones and Kristoffer Myczek examined the interaction among these three proteins to determine how they influence cognition. The results of their study appear in the May 26 issue of The Journal of Neuroscience.

“We found the combination of these proteins in the same mouse accelerated the onset of the diseases,” says Blurton-Jones, an assistant researcher in neurobiology & behavior. “The proteins appeared to exacerbate ‘clumping up.’”

This aggregation, he says, led to a more rapid decline in the mice’s memory performance, similar to that in people with the Lewy body variant of Alzheimer’s.

“We’re hopeful that by better understanding and modeling the interactions among these proteins,” he says, “researchers can develop new treatments to target their activity.”

LaFerla and his UCI colleagues are on the forefront of utilizing genetically modified mice to study neurodegenerative diseases. In 2003, LaFerla created the first to accumulate beta-amyloid plaques and tau tangles, believed to be the pathological agents of Alzheimer’s disease.

“Everyone uses the mouse,” said Benjamin Wolozin, professor of pharmacology at Boston University’s Alzheimer’s Disease Center, in a 2006 profile of LaFerla in UCI Magazine. “His mouse is among the most important tools available to Alzheimer’s researchers.”

With the model, LaFerla has shown that beta-amyloid in particular may be the initiating factor in both kinds of Alzheimer’s - the “sporadic” type that seems to randomly attack the elderly and the early-onset “familial” version.

Last year, experiments by Blurton-Jones and LaFerla demonstrated that neural stem cells can partially reverse impairment in these genetically altered mice. The two subsequently received a $3.6-million California Institute for Regenerative Medicine grant toward the development of an Alzheimer’s therapy involving human neural stem cells.

“It’s absolutely critical to discover new ways to help people with Alzheimer’s, which is the leading cause of among the elderly and affects 5.3 million people in the U.S., more than 500,000 of whom live in California,” LaFerla says. “We’re very excited about the advances spurred on by our development of transgenic mice, which we believe will lay the groundwork for Alzheimer’s treatments.”

Related Stories

Recommended for you

Pediatric obesity, depression connected in the brain, study finds

April 23, 2018
Early-life obesity and depression may be driven by shared abnormalities in brain regions that process rewards, according to researchers at the Stanford University School of Medicine.

What learning looks like in the brain

April 23, 2018
When we learn the connections between neurons strengthen. Addiction or other neurological diseases are linked to abnormally strong connections. But what does learning look like on the cellular and molecular level? How do ...

Watch your step: How vision leads locomotion

April 23, 2018
Using new technologies to track how vision guides foot placement, researchers at The University of Texas at Austin come one step closer in determining what is going on in the brain while we walk, paving the way for better ...

How your brain learns to expect mud puddles in the park (and other things)

April 23, 2018
When scientist Thorsten Kahnt was a high school student in Nuremberg, Germany, his friend Christian sported chin-length, curly brown hair. Then one day Christian appeared with newly buzzed hair, only half an inch long.

Multiple sclerosis may be linked to sheep disease toxin

April 23, 2018
Exposure to a toxin primarily found in sheep could be linked to the development of multiple sclerosis (MS) in humans, new research suggests.Carried out by the University of Exeter and MS Sciences Ltd., the study has found ...

Animal study connects fear behavior, rhythmic breathing, brain smell center

April 20, 2018
"Take a deep breath" is the mantra of every anxiety-reducing advice list ever written. And for good reason. There's increasing physiological evidence connecting breathing patterns with the brain regions that control mood ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.