Amniotic membrane used to repair human articular cartilage

June 23, 2010
Osteoarthritis is characterized by impairment of cartilage and subchondral bone. In this image, an example of damaged knee cartilage is shown. Credit: Kristie Wells

Spanish scientists have proposed using human amniotic membrane as a new tool for repairing damaged human articular cartilage, which heals very poorly because of its low capacity for self-repair. Their research, published in the journal Cell and Tissue Banking, shows that the cellular density of the cartilage synthesized could be greater than that of the body's own natural cartilage.

"The objective was to evaluate the utility of cryo-preserved human amniotic membrane (HAM) as a support for repairing human injuries, which have a very limited capacity for self-healing", Francisco J. Blanco, lead author of the study and a researcher at the Institute of Biomedical Research of La Coruna (INIBIC), tells SINC.

The results, which have been published in the journal Cell and Tissue Banking, show that cryo-preserved HAM is useful as a scaffold for growing human chondrocytes in cell therapy and for repairing human cartilage injuries. "It provides a more regular surface and fills in the cavities and fissures", explains Blanco.

The authors cultivated the chondrocytes ( that form part of the cartilaginous tissue), isolated from human articular cartilage, on the amniotic membrane over a period of three and four weeks. The amniotic membranes were used to develop 44 repair models of arthritic human articular cartilage in vitro, which was assessed between four and 16 weeks later.

The HAM also bonds well with the native cartilage. "In some models, we could not differentiate between where the native tissue stopped and the neo-synthesised tissue began", says the expert. This tissue had a fibrous appearance and high cellular density (cellularity), which in some cases was greater than that of the actual native cartilage.

The use of differentiated chondrocytes is a useful therapeutic option for repairing articular cartilage injuries. However, there are limitations to implanting these cells, since many patients will be ruled out due to their lack of healthy chondrocytes, and this technique also causes additional damage to the joint.

"Transplanting chondrocytes cultivated on different natural or synthetic 'scaffolds' is used today in cell tissue engineering. The HAM has sparked great interest over recent years, above all in the field of regenerative medicine", concludes Blanco.

Clinical solutions to osteoarthritis

Osteoarthritis (OA) is a major articular pathology that is characterised by alteration of the cartilage and the bone that supports it, the subchondral bone. As the current pharmacological and surgical treatments have only palliative effects, cell therapy is a new clinical approach for repairing damaged or destroyed tissues.

HAM has many clinical advantages as a support - it is an anti-microbial, anti-angiogenic, anti-tumour tissue, which reduces inflammation and pain and improves scarring. In addition, the amnios of the HAM has no immune response, meaning there are no risks associated with transplanting it, and it contains many of the components of natural cartilage.

More information: Silvia Díaz-Prado; Mª Esther Rendal-Vázquez; Emma Muiños-López; Tamara Hermida-Gómez; Margarita Rodríguez-Cabarcos; Isaac Fuentes-Boquete; Francisco J. de Toro; Francisco J. Blanco. "Potential use of the human amniotic membrane as a scaffold in human articular cartilage repair". Cell Tissue Bank (2010) 11:183-195 DOI 10.1007/s10561-009-9144-1

Related Stories

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.