Montreal researchers shed light on common juvenile cancer

June 16, 2010

A team of researchers from the Institute for Research in Immunology and Cancer (IRIC) of the University of Montreal have defined for the first time the mechanism behind three cancer-causing genes in acute lymphoblastic leukemia. Published in the journal Genes and Development, the findings offer insight on the complex interaction between the genes and their contributions to leukemia, thereby providing the foundation for the design of targeted therapies.

The study was conducted by primary authors Mathieu Tremblay, Ph.D. student and Cédric Tremblay, post-doctoral fellow in the Hematopoiesis and Leukemia Laboratory at the Université de Montréal and led by corresponding author and IRIC Principal Investigator, Trang Hoang.

Acute lymphoblastic leukemia (ALL) is the most frequent childhood cancers and affects lymphocytes, the cells in the body that normally fight infections. ALL starts when a single, immature white blood cell called a "blast" develops a series of mistakes or mutations that allow it to multiply uncontrollably. Eventually, these leukemic blasts take over the lymphoid organs, the bone marrow and crowd out normal blood cells.

While extensive research has been conducted over the years to understand this type of cancer, deciphering the complex process responsible for transforming normal cells into cancerous cells remains a challenge. In this study, researchers started from the well-known basis that the interaction between two , SCL and LMO, is involved at the onset of a specific type of ALL, called T-cell leukemia.

"We wanted to uncover the precise mechanism behind the process that causes a normal cell to become cancerous. Our study reveals that SCL and LMO expand the pool of immature lymphocytes, which proliferate intensively under the influence of a specific signal. These SCL-LMO-primed cells then acquire mutations in a third gene, Notch1, which is known to play a role in the majority of T-ALL patients," explains Trang Hoang. "In short, the synergy between these three genes in a permissive cell is sufficient to induce leukemia."

Although chemotherapy can cure up to 80 percent of ALL in children, researchers hope to minimize the side effects by designing new therapies that specifically target cancer causing genes. "The knowledge from our study could be instrumental in the development of less invasive therapies," adds Dr. Hoang.

More information: Genes and Development : genesdev.cshlp.org/content/24/11/1093.abstract

Related Stories

Recommended for you

Metabolism drives growth and division of cancer cells

February 20, 2017

The metabolic state of tumor cells contributes to signals that control their proliferation. German biochemist and Nobel Prize laureate Otto H. Warburg observed in the 1920s that tumor cells radically change their metabolism. ...

Bringing evidence to health screening debates

February 19, 2017

Whether to screen? How often? At what age? At what cost?—seem to readily breed conflicting opinions and public confusion. What's needed is rigorously produced evidence. That's where Constantine Gatsonis, chair of the Department ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.