Genetic ancestry data improve diagnosis in asthma and lung disease

July 7, 2010

Americans with lung disease may face a far greater level of lung damage than either they or their doctor suspect, depending on their individual genetic heritage, according to a study to be released July 7. The research implications range from diagnosing the severity of asthma, to disability decisions or eligibility for lung transplants, researchers say.

In the largest study of its kind to date, spanning a dozen research centers and pooling data on more than 3,000 patients, a team of researchers led by UCSF and Northwestern University found that patients' precise told far more about their potential lung function - and therefore any damage that has occurred - than the self-identified racial profile commonly used in such tests.

The results point to a more precise method of assessing patients' lung function, as well as the potential impact of using precise genetic benchmarks for assessing health overall, researchers say. Findings will appear in the July 22 print edition of the "" and online on July 7 at nejm.org.

Lung function is one of many medical assessments that use standard benchmarks, such as age, sex and race, to determine the normal expected range for an individual patient. Similar criteria also are used in assessing or the risk for some cancers. In patients with lung disease, those benchmarks help physicians assess the severity of damage represented by a patient's lung function test and are often used to determine whether patients have severe asthma, or whether they may be eligible for disability insurance or a lung transplant.

Standard race categories, however, don't capture the extent of our ancestral diversity, according to the paper's senior author, Esteban G. Burchard, MD, MPH, who is director of the UCSF Center for Genes, Environment and Health, and a member of the Department of Bioengineering and Therapeutic Sciences, a joint department between the UCSF schools of medicine and pharmacy.

"People throughout the world have a richer genetic heritage than can be captured by our current definitions of race," Burchard said, noting that almost every continent has large populations that are known to be genetically mixed. "When we force patients into an individual box, such as 'African-American' or 'Caucasian', we're missing a lot of genetic information."

While this study focused on patients who define themselves as African-Americans, the participants' actual ranged broadly and included Caucasian and African heritage.

"Since genetic ancestry improves our definition of normal lung function, it may be relevant for determining the severity of all lung diseases, as it was for asthma in this study," adds Rajesh Kumar, MD, an attending physician at Children's Memorial Hospital, associate professor at Northwestern University Feinberg School of Medicine and the lead and corresponding author on the paper. "Taking genetic ancestry into account could result in more appropriate treatment for patients."

The study used recently developed genetic tools to estimate individual genetic ancestry and found a significant association between ancestry and lung function. Advances in technology have reduced the cost of those tools significantly, according to the researchers. As a result, this could be a viable method of dramatically improving patient care at relatively low cost.

The researchers used five large-scale, independent health studies with self-identified African American populations, ranging in age from 18 to 93 years, to examine the impact of genetic ancestry on measures of lung function.

The team found a significant link between African ancestry and pulmonary measurement in both men and women across all ages.

"This study provides new evidence that genetic ancestry correlates to physiologic measures," added Burchard. "With it, we're one step closer to personalized medicine."

The authors acknowledge some important limitations with the study. For example, the association between and ancestry could be influenced by factors other than genetics, such as social and environmental exposures.

Related Stories

Recommended for you

Study reveals an ancient Achilles heel in the human genome

September 21, 2017
In a major study published today, researchers at deCODE genetics use whole-genome data from 14,000 people from across the population of Iceland, including 1500 sets of parents and children, to provide the most detailed portrait ...

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.