Humans First Acquired Malaria Parasites 2.5 Million Years Ago

July 9, 2010
Malaria parasites inside: red blood cells infected with malaria parasites (cell nucleus in blue).

(PhysOrg.com) -- Scientists have determined the evolutionary timeline for the microscopic parasites that cause one of the world's most widespread infectious diseases: malaria.

Having an understanding of the origins of the lineages of such pathogens, or disease-causing organisms, is fundamental to understanding emerging diseases, according to the researchers.

The origin of malaria in humans has been dated to as recent as 10,000 years ago and as long as several million years ago.

Now biologists Robert Ricklefs of the University of Missouri-St. Louis and Diana Outlaw of Mississippi State University in Starkville have found a for malaria parasites that provides a more precise date.

The results of their research, funded by the National Science Foundation (NSF), appear in this week's issue of the journal Science.

The findings provide a well-supported time calibration for the evolution of malaria parasites.

By marrying research with a new statistical approach, the biologists were able to get a better handle on the timeline of parasite evolution.

The scientists found that a key gene in malaria parasites evolved at 60 percent of the rate of the same gene in its hosts.

Knowing the rate of gene evolution of the vertebrate hosts, the biologists were able to estimate that modern malaria parasites began to diversify across mammals, birds and reptiles about 16 million years ago.

The ancestors of humans acquired the parasite 2.5 million years ago.

Humans First Acquired Malaria Parasites 2.5 Million Years Ago
Malaria in humans starts with the bite of a mosquito infected with a malaria-carrying parasite. Credit: National Institutes of Health

"Malaria parasites undoubtedly were relatively benign for most of that history, becoming a major disease only after the origins of agriculture and dense human populations," said Ricklefs.

"These findings are important in providing a quantitative rate of evolution for malaria," said Alan Tessier, program director in NSF's Division of Environmental Biology, which funded the research.

"They also reveal that host-switching can result in a rapid diversification of parasites, and decouple their evolution from that of their hosts," Tessier said.

"Because single-celled parasites leave no fossil record, one has to estimate their rate of evolution by comparison with their hosts," said Ricklefs.

"Previously, this had been done under the assumption that parasites evolve at the same rate as their hosts and thus were the same age as their hosts."

Ricklefs and Outlaw's research suggests that the parasites may jump to new, unrelated hosts at any time.

"One cannot equate parasite evolution," said Ricklefs, "with a host's evolution."

Related Stories

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.