Early life experience modifies gene vital to normal brain function

September 28, 2010, Society for Neuroscience

Early life stress, such as an extreme lack of parental affection, has lasting effects on a gene important to normal brain processes and also tied to mental disorders, according to a new animal study in the Sept. 29 issue of The Journal of Neuroscience.

In the last decade, researchers have found evidence that experiences can alter the form and structure of DNA, an effect known as epigenetics. Because these changes affect genes, events early in life have the potential to make a lasting impact on behavior and health. Recent studies focused on cancer and obesity have already shown the power of epigenetics.

In a study led by Tie-Yuan Zhang, PhD, of McGill University, researchers investigated whether these changes might apply to the activity of genes in brain regions that control and mental health. The authors explored how differences in a mother's attention affect the GAD1 gene, which controls the production of a chemical vital to brain cell communication called GABA. Research indicates that GABA helps to regulate emotion, and that people with schizophrenia may have GABA deficits.

The authors studied the maternal behavior of rats specifically bred to be either extremely caring or rarely affectionate. They found when the baby rats that were seldom touched grew up, specific regions of the DNA that controls the GAD1 gene were obstructed, likely leading to smaller amounts of GABA. On the other hand, adult rats coddled in the extreme as pups showed increased GAD1 gene production.

"A critical feature for the effect on gene GAD1 is that the immediate influence of is limited to a short period following birth, but the resulting changes are long-lasting, even into adulthood," Zhang said.

These findings suggest that the early life environment can drive molecular changes that affect and might determine a child's predisposition to mental illness.

"We already knew that maternal care determined the stress responses of an offspring through a similar process, but this is the first time maternal care has been shown to link, via epigenetics, with a key enzyme that causes a major human disorder," said Jonathan Seckl, MD, PhD, of The University of Edinburgh, and an expert on the molecular process of hormones.

Related Stories

Recommended for you

Study finds alcohol dampens brain waves associated with decision-making but not motor control

March 15, 2018
We all know that alcohol impairs our judgement, alertness and performance on tasks requiring attention, but the mechanism behind booze's effect on cognition still isn't well-understood. Now, a new study led by psychologists ...

Breakthrough discovery in neurotransmission

March 15, 2018
Samir Haj-Dahmane, Ph.D., senior research scientist at the University at Buffalo Research Institute on Addictions, has discovered how certain neurotransmitters are transported and reach their targets in the brain, which could ...

Research reveals brain mechanism involved in language learning

March 15, 2018
Learning a new language may be more of a science than an art, a University of Sussex study finds.

New research sheds light on underlying cause of brain injury in stroke

March 15, 2018
New research shows how the novel drug QNZ-46 can help to lessen the effects of excess release of glutamate in the brain – the main cause of brain injury in stroke.

Cell therapy could improve brain function for Alzheimer's disease

March 15, 2018
Like a great orchestra, your brain relies on the perfect coordination of many elements to function properly. And if one of those elements is out of sync, it affects the entire ensemble. In Alzheimer's disease, for instance, ...

New tissue technique gives stunning 3-D insights into the human brain

March 15, 2018
Imperial researchers have helped develop a breakthrough imaging technique which reveals the ultra-fine structure of the brain in unprecedented detail.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.