Patterned pulses boost the effects of deep brain stimulation, research shows

September 30, 2010, Rockefeller University

Electrical stimulation has been used as a sort of defibrillator of consciousness, rousing a victim of traumatic brain injury to at least partial awareness, after years in a coma. The procedure, termed deep brain stimulation, has also been used to treat Parkinson’s disease and has shown some promise for use in epilepsy, cluster headaches and treatment-resistant depression. But new research shows that the even, equally spaced electrical pulses typically used in the procedure now are not necessarily the most effective. Complicating the temporal pattern, Rockefeller University researchers say, may improve outcomes by more closely mimicking the dynamic signals that comprise the natural traffic of neurons.

The researchers, led by graduate student Amy Wells Quinkert and Donald W. Pfaff, head of the Laboratory of Neurobiology and Behavior, stimulated the brains of mice with two unconventional pulse patterns and found that one had a substantially greater effect in measures of the mice’s arousal than the conventional monotonic pattern that is the clinical standard of the day.

“The idea was that if we’re mimicking what the brain does naturally, rather than using a fixed frequency, then we may be increasing the efficacy of the treatment and decreasing the possibility of adverse effects,” Quinkert says. “And we got a pretty striking result.”

With colleague Nicholas Schiff, head of the Laboratory of Neurophysiology at Weill Cornell Medical College, the scientists used a simple, nonlinear equation — thought to describe the activity in some biological phenomena — to generate temporal series of pulses that were applied to the hippocampus, a brain region connected with a wide variety of emotional, visceral and memory functions. Using implanted electrodes, they also stimulated the thalamus, a deeper that receives input from the brain’s arousal systems and projects to the .

The stimulus, which was applied for 10 minutes, varied in the length of the sequence of pulses that was repeated — 10 pulse repeat in one experiment and 50 pulse repeat in another. The researchers observed the arousal of the mice before, during and after 10-minute stimulation periods and compared it to that of mice that received the conventional fixed frequency pattern. They found that in several measures that reflect behavioral arousal, including fidgeting movements, total distance traversed and whole body movements, the 10-repeat nonlinear pattern, applied to the hippocampus, increased activity more than either the 50-repeat or the fixed frequency. However, the 10-repeat pattern had less effect than the alternatives when applied to the thalamus, an indication of the neuroanatomical particularity of the factors involved, the researchers report in experiments published online in Behavioural Brain Research.

“Not only does temporal pattern make a difference, but also the response to the temporal pattern is different in each stimulation target,” the researchers say. “This difference between likely depends on the physiology of the target of stimulation and its function within the particular neuronal circuit of interest.”

The results lend credence to the long-held hypothesis that a portion of the information trafficked in the brain is encoded in the temporal patterning of firing neurons that has been observed, and not simply the absolute number of neuronal pulses. Quinkert plans to explore whether there is something specific to the equation they used to determine the pulses that is responsible for the observed effect, or whether the effect could be achieved by random series or by other variations in the pulse series.

“Amy’s experiments represent the first time that a mathematical equation was used to determine a pattern of ,” Pfaff says. “We hope that our findings in mouse brain can be applied to Professor Schiff’s studies in monkey , in the future.”

More information: Behavioural Brain Research 214: 377-385 (December 25, 2010);Temporal patterning of pulses during deep brain stimulation affects central nervous system arousal, Amy Wells, et al. dx.doi.org/10.1016/j.bbr.2010.06.009

Related Stories

Recommended for you

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

New study reveals why some people are more creative than others

January 16, 2018
Creativity is often defined as the ability to come up with new and useful ideas. Like intelligence, it can be considered a trait that everyone – not just creative "geniuses" like Picasso and Steve Jobs – possesses in ...

Even without nudging blood pressure up, high-salt diet hobbles the brain

January 16, 2018
A high-salt diet may spell trouble for the brain—and for mental performance—even if it doesn't push blood pressure into dangerous territory, new research has found.

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

Preterm babies may suffer setbacks in auditory brain development, speech

January 15, 2018
Preterm babies born early in the third trimester of pregnancy are likely to experience delays in the development of the auditory cortex, a brain region essential to hearing and understanding sound, a new study reveals. Such ...

BOLD view of white matter

January 15, 2018
The brain consists of gray matter, which contains the nerve cell bodies (neurons), and white matter, bundles of long nerve fibers (axons) that until recently were considered passive transmitters of signals between different ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.