Scientists identify molecular gatekeeper of arthritis

September 8, 2010, University of Rochester Medical Center

Elimination of a molecular gatekeeper leads to the development of arthritis in mice, scientists report in a study published in the Journal of Experimental Medicine. The newly discovered gatekeeper is a protein that determines the fate - survival or death - of damaging cells that mistakenly attack the body's own tissues and lead to autoimmune disorders such as arthritis.

Better understanding how arthritis develops will offer scientists an opportunity to explore new types of treatments for patients whose arthritis has not been effectively treated with current therapies.

"This finding is an encouraging step forward for researchers, clinicians and arthritis sufferers, many of whom fail available therapies," said lead researcher Frances Lund, Ph.D., professor of Medicine in the Division of Allergy/Immunology and Rheumatology at the University of Rochester Medical Center. "An added bonus is that this finding may help in the search for new treatments for other , such as lupus."

The at the center of the new finding, known as Gαq (G alpha q), is part of a larger signaling pathway that Lund and collaborators from across the United States and China investigated in mice. Gαq regulates B cells, one type of immune cell that the body maintains to fight off invaders like bacteria, viruses and parasites. While most B cells help defend the body, some B cells are autoreactive - they turn against the body's own tissues.

In mice, Gαq normally stops autoreactive B cells from building up in tissues by suppressing the pro-survival signaling pathway uncovered by Lund's team. When Gαq is eliminated, autoreactive B cells are able to pass through internal 'checkpoints' that typically get rid of these harmful cells, creating a buildup of the cells that contributes to the development of autoimmune disease.

Several new studies expanding on the current finding are in the works, including testing whether drug compounds that alter the expression or activity of Gαq in mice can slow the development of autoimmunity. Beyond preclinical testing in mice, researchers also hope to start screening Gαq levels in patients to learn more about how the protein works in humans.

According to Lund, "There is a subset of cardiac patients who, due to an inherited genetic mutation, have increased levels of Gαq. We are now looking to see if some arthritis patients have mutations that favor decreased levels of Gαq. If we find these patients, someday we may be able to design targeted, personalized therapy for this subpopulation of arthritis sufferers."

"In the past few decades, nearly all of the really important advances in rheumatology have started with basic studies like this one" said Richard John Looney, M.D., a rheumatologist and professor of Medicine at the University of Rochester Medical Center. "I will be particularly interested in the translational studies that will be starting soon, as they may result in new applications such as assessing the risk someone may develop or other autoimmune diseases."

Lund's research also led to the creation of a new of arthritis. By eliminating Gαq, the disease just happens in mice, as opposed to previous mouse models which require injecting an antigen or foreign body, such as collagen, into mice to trigger an immune response. The new model more closely mirrors how autoimmunity starts and progresses in humans, and may be used in the future to test new drugs in development.

"Our goal is to move the knowledge we've gained from basic research to meaningful results that will ultimately help patients, and our main finding coupled with the creation of an improved mouse model puts us in a very strong position to do that," said Lund.

As with many discoveries, the new finding came about unexpectedly. Scientists in Lund's lab were looking at cell migration to try to identify the molecular signals that cause inflammation in tissues in Gαq knockout mice. They noticed that as they grew older, the mice's joints swelled and it appeared as though they were getting . Lund's team pursued the lead, which led to the discovery of the protein's role in the development of the disease and the creation of the new mouse model.

Related Stories

Recommended for you

Team develops 3-D tissue model of a developing human heart

March 16, 2018
The heart is the first organ to develop in the womb and the first cause of concern for many parents.

Human 'chimeric' cells restore crucial protein in Duchenne muscular dystrophy

March 16, 2018
Cells made by fusing a normal human muscle cell with a muscle cell from a person with Duchenne muscular dystrophy —a rare but fatal form of muscular dystrophy—were able to significantly improve muscle function when implanted ...

Democratizing science: Researchers make neuroscience experiments easier to share, reproduce

March 16, 2018
Over the past few years, scientists have faced a problem: They often cannot reproduce the results of experiments done by themselves or their peers.

Genetic variant discovery to help asthma sufferers

March 16, 2018
Research from the University of Liverpool, published today in Lancet Respiratory Medicine, identifies a genetic variant that could improve the safety and effectiveness of corticosteroids, drugs that are used to treat a range ...

Study identifies potential drug for treatment of debilitating inherited neurological disease

March 15, 2018
St. Jude Children's Research Hospital scientists have demonstrated in mouse studies that the neurological disease spinal bulbar muscular atrophy (SBMA) can be successfully treated with drugs. The finding paves the way for ...

Researchers say use of artificial intelligence in medicine raises ethical questions

March 15, 2018
In a perspective piece, Stanford researchers discuss the ethical implications of using machine-learning tools in making health care decisions for patients.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.