Protein provides link between calcium signaling in excitable and non-excitable cells

October 1, 2010

A calcium-sensing protein, STIM1, known to activate store-operated calcium channels has been found to also inhibit voltage-operated calcium channels, according to researchers at Temple University.

The researchers published their findings, The Calcium Store Sensor, STIM1, Reciprocally Controls Orai and Cav1.2 Channels, in the Oct. 1 issue of Science magazine.

Calcium, not just important for bones and teeth, is a universal signaling agent that is pivotal in controlling a wide range of cell functions including fast muscle and nerve responses and slower response such as cell division, cell growth, apoptosis or and even fertilization of eggs.

Calcium is stored in cells and rapidly released out and pumped back to control things like contraction of muscle or the triggering of said Donald Gill, Professor and Chair of in Temple's School of Medicine and the study's lead researcher.

He said that the STIM1 , which he helped discover about 5 years ago, was found to play a major role in sensing the low levels of calcium in cell stores and activating the highly selective Orai calcium channel to allow calcium to flow back into the cell.

"We thought it seemed crazy that the STIM1 protein goes through this incredible dance but the only thing it does is activate the Orai channel," he said. "It seemed difficult to believe it only had this one specific function."

About two years ago, Gill and his colleagues noticed that in addition to activating the Orai channel to allow calcium to trickle back into the cell stores, STIM1 was also inhibiting the function of the crucial and widespread voltage-operated calcium channel, known as the L-type—channel.

"At the time, we thought only electrically excitable cells, like cardiac, neural and skeletal cells, had L-type (or long-lasting) calcium channels," he said. "So it was surprising that the STIM1 protein known to function mostly in non-excitable cells was having a pretty profound effect on the L-type calcium channels".

"This is particularly true in tissue like smooth muscle where it is sort of like a hybrid between an excitable and a non-excitable cell, because it has the voltage-operated calcium channel and the Orai , as well as the very powerful STIM sensing system," he said.

Gill said that the researchers' finding gives a common mechanism for calcium signaling in both excitable and non-excitable cells, a link that was never before known.

"It's a very basic finding, but it's another whole area of control that people didn't know about before," he said. "They knew there were L-type calcium channels in many non-excitable , but they didn't seem to have any function. Now it seems very possible that the reason they didn't function is that the STIM1 was suppressing their function."

More information: www.sciencemag.org

Related Stories

Recommended for you

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

In lab research, scientists slow progression of a fatal form of muscular dystrophy

December 8, 2017
In a paper published in the Nature journal Scientific Reports, Saint Louis University (SLU) researchers report that a new drug reduces fibrosis (scarring) and prevents loss of muscle function in an animal model of Duchenne ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.