Scientists make cancer breakthrough in the way anti-cancer drugs are tested

October 14, 2010
This is an image of capillaries in the lab showing expression of genes normally present only in lymphatic cells. Credit: University of East Anglia

Scientists at the University of East Anglia have made an important breakthrough in the way anti-cancer drugs are tested.

A cannot grow to a large size or spread until it has developed its own and leading research has looked for a way of halting capillary formation to stop tumours taking hold.

But new findings published today in the have shown that scientists testing such treatments may not have been studying exactly what they thought they were.

The research proves that cells are able to switch their genetic profile – turning off genes expressed by blood vessel cells and turning on genes specific to lymphatic cells.

This "switch" was previously thought to be impossible and means that scientists may have been researching lymphatic cells, rather than blood vessel cells. It is hoped the discovery will propel the race to find revolutionary new treatments.

Lead author Dr Lin Cooley, said: "It has always been thought that cells could not change from blood to lymphatic vascular cells.

"Other researchers have been doing experiments thinking they were looking at , when in fact they were looking at lymphatic vascular cells. This breakthrough is important because they have not been studying what they think they have been studying.

"It is a big discovery and will be very important in testing potential anti-cancer drugs."

Researchers used human vein cells in experiments where they form capillaries - the smallest of the body's blood vessels - when cultured in various environments similar to the body.

The human vascular system is made up of two separate circulatory networks – the blood and lymphatic vasculature. Blood vessels and lymphatic vessels are structurally similar, but have very different roles, and are made up of two distinct cell types.

Dr Cooley said: "We have discovered that when vein cells form tube structures, they appear to "switch" their , turning off genes expressed by blood vessel , and turning on genes specific to lymphatic vessels.

"This change can be reversed, and is dependent on the particular environment they are cultured in.

"We have also shown that their identity changes in response to the cell's environment rather than only being specified by signals during early embryonic development".

Related Stories

Recommended for you

Researchers target undruggable cancers

October 19, 2017
A new approach to targeting key cancer-linked proteins, thought to be 'undruggable," has been discovered through an alliance between industry and academia.

Mutant gene found to fuel cancer-promoting effects of inflammation

October 19, 2017
A human gene called p53, which is commonly known as the "guardian of the genome," is widely known to combat the formation and progression of tumors. Yet, mutant forms of p53 have been linked to more cases of human cancer ...

New study reveals breast cancer cells recycle their own ammonia waste as fuel

October 19, 2017
Breast cancer cells recycle ammonia, a waste byproduct of cell metabolism, and use it as a source of nitrogen to fuel tumor growth, report scientists from Harvard Medical School in the journal Science.

Breast cancer researchers find bacteria imbalance link

October 19, 2017
Researchers in the United States have uncovered differences in the bacterial composition of breast tissue of healthy women versus those with breast cancer.

US regulators approve 2nd gene therapy for blood cancer

October 19, 2017
U.S. regulators on Wednesday approved a second gene therapy for a blood cancer, a one-time, custom-made treatment for aggressive lymphoma in adults.

New findings explain how UV rays trigger skin cancer

October 18, 2017
Melanoma, a cancer of skin pigment cells called melanocytes, will strike an estimated 87,110 people in the U.S. in 2017, according to the Centers for Disease Control and Prevention. A fraction of those melanomas come from ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.