Study shows importance of exercise for those at special risk for Alzheimer's

November 18, 2010, University of Wisconsin - Milwaukee

Physical activity promotes changes in the brain that may protect high-risk individuals against cognitive decline, including development of Alzheimer's disease, according to a new study done at the University of Wisconsin-Milwaukee (UWM).

J. Carson Smith, an assistant professor of health sciences, included in the study both people who carry a high-risk gene for Alzheimer's disease, and other healthy without the gene.

"Our study suggests that if you are at genetic risk for , the benefits of exercise to your might be even greater than for those who do not have that ," says Smith.

While evidence already shows that is associated with maintenance of cognitive function across a life span, most of this research has been done with healthy people, without any consideration of their level of risk for Alzheimer's, says Smith.

A team of researchers compared brain activation during memory processing in four separate groups of healthy 65- to 85-years-olds. The level of risk was defined by whether an individual carried the apolipoprotein E-epsilon4 (APOE–ϵ4) allele. Physical activity status was defined by how much and how often the participants reported physical activity (PA). The study divided subjects into Low Risk/Low PA, Low Risk/High PA, High Risk/Low PA and High Risk/High PA.

Functional magnetic resonance imaging (fMRI) was used to measure of participants while they performed a mental task involving discriminating among famous people. This test is very useful, says Smith, because it engages a wide network called the semantic memory system, with activation occurring in 15 different functional regions of the brain.

"When a person thinks about people – for example, Frank Sinatra or Lady Gaga – that involves several lobes of the brain," explains Smith.

In the study groups of those carrying the gene, individuals who exercised showed greater brain activity in memory-related regions than those who were sedentary.

Perhaps even more intriguing, physically active people with the gene had greater brain activity than those who were physically active but not gene carriers.

There are many physiological reasons why this could be happening, Smith says. "For example, people with this increased activation might be compensating for some underlying neurological event that is involved in .". "Using more areas of their brain may serve as a protective function, even in the face of disease processes."

More information: The study will be published in Vol. 54 (January 2011) of the journal NeuroImage, but is now available online.

Related Stories

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.