Math researcher illuminates cellular basis of neural impulse transmission

November 2, 2010

(PhysOrg.com) -- NJIT Associate Professor Victor Matveev, PhD, in the department of mathematical sciences, was part of a research team that published "N-type Ca2+ channels carry the largest current: Implications for nanodomains and transmitter release," in Nature Neuroscience on Oct. 17, 2010.

Leading the project, Elise Stanley, PhD, a senior scientist at the Toronto Western Research Institute, said that Matveev's mathematical modeling showed that calcium influx through a single N-type is sufficient to trigger the fusion of a secretory vesicle located 25 nm from the channel.

Explained Stanley: "These findings may help to explain why nature evolved this new family of channels, permitting an efficient transmitter release mechanism with a modular molecular organization. Our next objective will be to determine how this exquisitely organized 'molecular machine' plays a role in synaptic modulation which is critical for memory and behavior modification." Since transmitter release is involved in virtually every aspect of nervous system function, these results have a broad impact for the understanding of normal brain processing and central and disorders.

The results of this work showed that the calcium current through an N-type channel was larger in comparison to calcium channels that are not involved in synaptic transmission, contrary to the currently accepted channel conductance hierarchy.

Furthermore, the authors' modeling work showed that the current through a single open N-type calcium channel may be sufficient to enable neurotransmitter release. These results demonstrate the degree to which N-type calcium channel properties are adapted for their role in synaptic transmission, and also shed light on the highly localized nature of intra-synaptic calcium signaling.

Matveev's research focuses on , primarily on biophysical modeling and numerical simulations of synaptic function and its mechanisms. He uses analytical methods and computational techniques, from stochastic modeling to numerical solution of partial and ordinary differential equations.

Matveev collaborates with experimental neurophysiologists, and develops models to explain and fit the experimental data. His current projects include the study of the mechanisms of short-term synaptic facilitation and other calcium-dependent processes involved in neurotransmitter secretion, and the modeling of presynaptic calcium diffusion and buffering.

To facilitate his research, Matveev also has been working on the development of a software application designed for solving the reaction-diffusion equation arising in the study of intracellular calcium dynamics ("Calcium Calculator").

More information: Weber AM, Wong FK, Tufford AR, Schlichter LC, Matveev V, Stanley EF. N-type Ca2+ channels carry the largest current: implications for nanodomains and transmitter release, Nature Neuroscience, 13 , 1348–1350 (2010). http://www.nature.com/neuro/journal/v13/n11/abs/nn.2657.html

Related Stories

Recommended for you

Scientists reveal new avenue for drug treatment in neuropathic pain

November 24, 2017
New research from King's College London has revealed a previously undiscovered mechanism of cellular communication, between neurons and immune cells, in neuropathic pain.

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

What if consciousness is not what drives the human mind?

November 22, 2017
Everyone knows what it feels like to have consciousness: it's that self-evident sense of personal awareness, which gives us a feeling of ownership and control over the thoughts, emotions and experiences that we have every ...

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.