Scientists discover brain's inherent ability to focus learning

December 8, 2010
Scientists discover brain's inherent ability to focus learning

Medical researchers have found a missing link that explains the interaction between brain state and the neural triggers responsible for learning, potentially opening up new ways of boosting cognitive function in the face of diseases such as Alzheimer's as well as enhancing memory in healthy people.

Much is known about the neural processes that occur during learning but until now it has not been clear why it occurs during certain brain states but not others. Now researchers from the University of Bristol have been able to study, in isolation, the specific which enhances learning and memory.

Acetylcholine is released in the brain during learning and is critical for the acquisition of new memories. Its role is to facilitate the activity of NMDA receptors, proteins that control the strength of connections between nerve cells in the brain.

Currently, the only effective treatment for the symptoms of seen in diseases such as Alzheimer's is through the use of drugs that boost the amount of acetylcholine release and thereby enhance cognitive function.

Describing their findings in the journal Neuron, researchers from Bristol's School of Physiology and Pharmacology have shown that acetylcholine facilitates NMDA receptors by inhibiting the activity of other proteins called SK channels whose normal role is to restrict the activity of NMDA receptors.

This discovery of a role for SK channels provides new insight into the mechanisms underlying learning and memory. SK channels normally act as a barrier to NMDA receptor function, inhibiting changes in the strength of connections between nerve cells and therefore restricting the brain's ability to encode memories. Findings from this latest research show that the SK channel barrier can be removed by the release of acetylcholine in the brain in order to enhance our ability to learn and remember information.

Lead researcher Dr Jack Mellor, from the University of Bristol's Medical School, said: "These findings are not going to revolutionise the treatment of Alzheimer's disease or other forms of cognitive impairment overnight. However, national and international funding bodies have recently made research into aging and dementia a top priority so we expect many more advances in our understanding of the mechanisms underlying and memory in both health and disease."

The team studied the effects of drugs that target acetylcholine receptors and SK channels on the strength of connections between nerve cells in animal brain tissue. They found that changes in connection strength were facilitated by the presence of drugs that activate acetylcholine receptors or block SK channels revealing the link between the two proteins.

Dr Mellor added: "From a therapeutic point of view, this study suggests that certain drugs that act on specific acetylcholine receptors may be highly attractive as potential treatments for cognitive disorders. Currently, the only effective treatments for patients with Alzheimer's disease are drugs that boost the effectiveness of naturally released acetylcholine. We have shown that mimicking the effect of at specific receptors facilitates changes in the strength of connections between . This could potentially be beneficial for patients suffering from Alzheimer's disease or schizophrenia."

More information: Facilitation of Long-Term Potentiation by Muscarinic M1 Receptors is mediated by inhibition of SK channels, by Buchanan KA, Petrovic MM, Chamberlain SEL, Marrion NV & Mellor JR in Neuron.

Related Stories

Recommended for you

'Busybody' protein may get on your nerves, but that's a good thing

October 17, 2017
Sensory neurons regulate how we recognize pain, touch, and the movement and position of our own bodies, but the field of neuroscience is just beginning to unravel this circuitry. Now, new research from the Salk Institute ...

Team finds training exercise that boosts brain power

October 17, 2017
One of the two brain-training methods most scientists use in research is significantly better in improving memory and attention, Johns Hopkins University researchers found. It also results in more significant changes in brain ...

Worms learn to smell danger

October 17, 2017
Worms can learn. And the ways they learn and respond to danger could lead scientists to new treatments for people with neurodegenerative diseases.

Mechanism explains how seizures may lead to memory loss

October 16, 2017
Although it's been clear that seizures are linked to memory loss and other cognitive deficits in patients with Alzheimer's disease, how this happens has been puzzling. In a study published in the journal Nature Medicine, ...

Study shows people find well-being more so from special places than from mementoes

October 16, 2017
(Medical Xpress)—A team of researchers at the University of Surrey has found that people experience a feeling of well-being when thinking about or visiting a place that holds special meaning to them. They also found that ...

New study describes how dopamine tells you it isn't worth the wait

October 16, 2017
How do we know if it was worth the wait in line to get a meal at the new restaurant in town? To do this our brain must be able to signal how good the meal tastes and associate this feeling with the restaurant. This is done ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.