Altered cell metabolism has role in brain tumor development

January 31, 2011, Duke University

(PhysOrg.com) -- Scientists at Duke Cancer Institute have discovered that genetic mutations found in brain tumors can alter tumor metabolism. This work could help lead to new designs for anti-cancer drugs based on the unique properties of these tumors.

“Malignant glioma appears to be at least two large subclasses of diseases – one that involves mutations in the IDH1 and IDH2 genes and one that doesn’t,” said Hai Yan, M.D., Ph.D., an associate professor in the Duke Department of Pathology who led a collaborative group of researchers to conduct the study. “The IDH mutation can serve as a biomarker to help single out individuals who are likely to have better outcomes and who might then receive a particular type of treatment based on their tumor IDH mutation status."

“What we and other researchers are learning now is that certain changes in are probably a hallmark of cancer,” Yan said.

The study was published in the journal Proceedings of the National Academy of Sciences Early Edition the week of Jan. 31.

Two years ago, work by Yan and his colleagues showed that a mutation that disrupts the isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) genes was common in some types of incurable , including astrocytomas, oligodendrogliomas, and glioblastomas. Their work suggested that these tumors require the gene to go awry at some point during cancer development. Though key IDH discoveries have been made around the world, a reason that IDH gene mutations could have such a profound influence on brain cancer has remained elusive.

In the current study, Yan’s group solved the connection to metabolism. The IDH1 and IDH2 genes are known to play an important role in cell metabolism — the conversion of nutrients into energy and into building blocks to manufacture new cells.

The researchers examined concentrations of hundreds of metabolites, including sugar, protein, and fat molecules, in that they were able to grow in their laboratory. Technological improvements in the past five years – the science of metabolomics -- have made it possible for scientists to simultaneously look at hundreds or thousands of such metabolites to learn what happened in cells with the mutation.

The technology revealed that more than 100 metabolites had altered concentrations in cells with the defective IDH1 or IDH2 genes compared to cells without the defective genes.

One very common metabolite in the human brain -- N-acetyl-aspartyl-glutamate -- was found to be 50 times less common in cells that had that IDH1 mutation compared to those that did not, said Zach Reitman, a student pursuing combined M.D. and Ph.D. degrees in the Medical Scientist Training Program at Duke. “The fact that defective genes can alter the metabolism of cancer cells could mean that altering cellular metabolism is an important step in brain tumor development.”

Ivan Spasojevic, Ph.D., assistant director and manager of the Duke Clinical Pharmacology Laboratory, said, “We devised a brand new method to confirm that some of these changes were also present in patients with brain tumors. This approach gave us confidence that what we saw in metabolomics studies of cancer cells in petri dishes was what was really happening in patients,” Spasojevic said.

Tumors were removed as part of the patients’ normal treatment course, and the tumor tissue was analyzed with patient consent.

“The study emphasized that cellular metabolism could potentially be an ‘Achilles heel’ for brain tumors, and it points to several promising avenues for future research into new treatments for brain tumors in particular,” said Genglin Jin, Ph.D., a key author and postdoctoral research fellow in Yan’s lab.

Related Stories

Recommended for you

Researchers discover novel mechanism linking changes in mitochondria to cancer cell death

February 20, 2018
To stop the spread of cancer, cancer cells must die. Unfortunately, many types of cancer cells seem to use innate mechanisms that block cancer cell death, therefore allowing the cancer to metastasize. While seeking to further ...

Stem cell vaccine immunizes lab mice against multiple cancers

February 15, 2018
Stanford University researchers report that injecting mice with inactivated induced pluripotent stem cells (iPSCs) launched a strong immune response against breast, lung, and skin cancers. The vaccine also prevented relapses ...

Induced pluripotent stem cells could serve as cancer vaccine, researchers say

February 15, 2018
Induced pluripotent stem cells, or iPS cells, are a keystone of regenerative medicine. Outside the body, they can be coaxed to become many different types of cells and tissues that can help repair damage due to trauma or ...

Team paves the way to the use of immunotherapy to treat aggressive colon tumors

February 15, 2018
In a short space of time, immunotherapy against cancer cells has become a powerful approach to treat cancers such as melanoma and lung cancer. However, to date, most colon tumours appeared to be unresponsive to this kind ...

Can our genes help predict how women respond to ovarian cancer treatment?

February 15, 2018
Research has identified gene variants that play a significant role in how women with ovarian cancer process chemotherapy.

First comparison of common breast cancer tests finds varied accuracy of predictions

February 15, 2018
Commercially-available prognostic breast cancer tests show significant variation in their abilities to predict disease recurrence, according to a study led by Queen Mary University of London of nearly 800 postmenopausal women.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.