Scientists now know why some cancers become malignant and others don't

January 6, 2011

Cancer cells reproduce by dividing in two, but a molecule known as PML limits how many times this can happen, according to researchers lead by Dr. Gerardo Ferbeyre of the University of Montreal's Department of Biochemistry. The team proved that malignant cancers have problems with this molecule, meaning that in its absence they can continue to grow and eventually spread to other organs. Importantly, the presence of PML molecules can easily be detected, and could serve to diagnose whether a tumor is malignant or not.

"We discovered that benign cancer cells produce the PML molecule and display abundant PML bodies, keeping them in a dormant, state. Malignant cancer cells either don't make or fail to organize PML bodies, and thus proliferate uncontrollably," Ferbeyre explained. Senescence is the mature stage in a cell's life at which in can no longer reproduce and it is a natural defense against . When are benign, it means that they cannot spread or grow into other parts of the body.

The team of researchers based both on campus and at the University of Montreal Hospital Research Centre built on Dr. Ferbeyre's prior discovery that PML is able to force cells to enter senescence. However, for the past ten years, the mechanism by which this was achieved remained mostly unknown. Hospital researchers worked with patients to collect samples that enabled the team to make their discovery.

"Our findings unravel the unexpected ability of PML to organize a network of tumor suppressor proteins to repress the expression or the amount of other proteins required for ," explained researcher Véronique Bourdeau. Such proteins are essential in our body that play a key role in controlling the birth, growth and death of cells. Researcher Mathieu Vernier emphasized that "this is an important finding with implications for our understanding on how the normal organism defends itself from the threat of cancer."

The work offers exciting avenues for future research. "Our discovery opens new possibilities to explore what other molecules are involved in generating senescence: a goal we consider important if we want to design therapies that turn malignant tumors into benign tumors," Ferbeyre said. The research was published on January 1, 2011 in Genes and Development, and received funding from the Canadian Cancer Society and by the Fonds de la recherche en Santé du Québec.

Related Stories

Recommended for you

MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer

September 25, 2017
A new magnetic resonance imaging (MRI) contrast agent being tested by researchers at Case Western Reserve University not only pinpoints breast cancers at early stages but differentiates between aggressive and slow-growing ...

Alternative splicing, an important mechanism for cancer

September 22, 2017
Cancer, which is one of the leading causes of death worldwide, arises from the disruption of essential mechanisms of the normal cell life cycle, such as replication control, DNA repair and cell death. Thanks to the advances ...

'Labyrinth' chip could help monitor aggressive cancer stem cells

September 21, 2017
Inspired by the Labyrinth of Greek mythology, a new chip etched with fluid channels sends blood samples through a hydrodynamic maze to separate out rare circulating cancer cells into a relatively clean stream for analysis. ...

Whole food diet may help prevent colon cancer, other chronic conditions

September 21, 2017
A diet that includes plenty of colorful vegetables and fruits may contain compounds that can stop colon cancer and inflammatory bowel diseases in pigs, according to an international team of researchers. Understanding how ...

Drug combination may improve impact of immunotherapy in head and neck cancer

September 21, 2017
Checkpoint inhibitor-based immunotherapy has been shown to be very effective in recurrent and metastatic head and neck cancer but only in a minority of patients. University of California San Diego School of Medicine researchers ...

New kinase detection method helps identify targets for developing cancer drugs

September 21, 2017
Purdue University researchers have developed a high-throughput method for matching kinases to the proteins they phosphorylate, speeding the ability to identify multiple potential cancer drug targets.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.