Study shows how stress causes extensive genetic rewriting

January 12, 2011 by Kristen Bole, University of California, San Francisco

(PhysOrg.com) -- A team of scientists in the United States, South Korea, and Switzerland has uncovered a vast, complex network of 160,000 genetic interactions within yeast cells that changes dramatically when the cells are subjected to stress.

The “rewiring” of this genetic network is much more extensive than scientists previously thought. About 70 percent of the genetic interactions that took place when the were under stress did not take place in normal, unperturbed cells.

“The stress response is dynamic,” says Nevan Krogan, PhD, an associate professor of Cellular and Molecular Pharmacology at UCSF and an affiliate of the California Institute for Quantitative Biosciences (QB3). “In the cell, things are constantly changing and functional modules are being rewired.”

Krogan and Trey Ideker, PhD, chief of the Genetics Division at the UC San Diego School of Medicine, led the study, which was described in the journal Science last month, with first author Sourav Bandyopadhyay, PhD – a fellow at QB3 and the UCSF Helen Diller Family Comprehensive Cancer Center – and colleagues at Albert Einstein College of Medicine, Seoul National University in Korea, and ETH Zurich in Switzerland.

The new work has implicated several genes that were never before known to be involved in stress response, with immediate implications for scientists who study biological responses to stress, the authors say. The technique used also may prove useful for studying a wide variety of human diseases, by providing a new way of examining broadly how cells deal with stresses, diseases, drugs, or other challenges.

How a cell is wired genetically – the exact way its thousands of genes interact and “talk” to one another – is a critical issue for understanding the inner workings of the cell. In the last decade or so, the revolution in DNA sequencing has led to a wealth of new information about which genes are present and active in many types of cells.

Often this data is static, however, and is limited to information about which genes are present but not how these genes interact or how these interactions change over time. The difference is analogous to comparing a photograph with a video.

Imagine a busy playground full of children in the summer. A psychologist examining child behavior might find a photo of the playground useful. It would reveal the structures, the people, and perhaps many of the human interactions. But a video might reveal rich details not seen in the static image, such as which kids are playing with each other, which are playing by themselves, which adults seated on the benches are attentive, and which are distracted. A video might even reveal how a dramatic change to the environment, like the sound of an approaching ice cream truck, alters the children’s play. The same is true for the landscape of a living cell, says Krogan.

“What we’d really like to have,” he says, “is an animated movie.”

Up to now, however, there hasn’t been a way to grab more than a single snapshot with respect to large-scale interaction networks.

Now, using a new technique called differential epistasis mapping, Krogan and his colleagues have been able to take a step toward a more animated view of the dynamic rewiring inside cells. Using the technique, they have generated two snapshots of about 160,000 genetic interactions within yeast—one set of interactions that exists under normal conditions and one set that exists when the cells are stressed, having been exposed to a DNA-damaging chemical called methyl methanesulfonate.

The snapshots reveal how widely yeast cells rewire their genetic networks to deal with the DNA-damaging stress. In their article, Krogan and his colleagues detail how the technique helped them to identify sets of genes involved in the cell’s response to the DNA damage that were not previously known to be involved in DNA repair.

“Nobody could have predicted the connections we are finding in the presence of ,” says Krogan.

Explore further: Scientists map changes in genetic networks caused by DNA damage

More information: The article, titled, “Rewiring of Genetic Networks in Response to DNA Damage,” appeared in the Dec. 2, 2010, issue of the journal Science and online at www.sciencemag.org/content/330/6009/1385.full.html

Related Stories

Scientists map changes in genetic networks caused by DNA damage

December 2, 2010
Using a new technology called "differential epistasis maps," an international team of scientists, led by researchers at the University of California, San Diego School of Medicine, has documented for the first time how a cellular ...

A cellular roadmap for medical researchers

January 6, 2011
(PhysOrg.com) -- Advances in network science to map the complexity of human cells promises to offer significant new resources for health professionals striving to cure disease, according to a new paper coauthored by Albert-László ...

Unraveling stress: Understanding the mechanisms for coping

October 5, 2010
Stress is one of life's universal experiences -- everyone is familiar with it, regardless of who they are, where they live, or what they do. But while stress is common, it is hardly simple. Dr. Alon Chen of the Weizmann Institute ...

Harvard researchers identify new aspect of cell reprogramming

November 8, 2010
(PhysOrg.com) -- An interdisciplinary group of leading Harvard geneticists and stem cell researchers has found a new genetic aspect of cell reprogramming that may ultimately help in the fine-tuning of induced pluripotent ...

Researchers Map Circuitry of Yeast Genes Using Technique That Could Be Applied to Humans

May 7, 2005
Researchers at UCSD have invented a technique that organizes the genetic information contained in the 16 chromosomes of the yeast Saccharomyces cerevisiae into a wiring diagram resembling an electronic circuit board. An analogous ...

Scientists find that genes have help in determining our traits

December 27, 2010
(PhysOrg.com) -- For decades, biology textbooks have been clear – our traits are the product of our genes. But a new study by Yale University researchers published Dec. 26 in Nature Genetics suggests another mechanism ...

Recommended for you

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Researchers uncover molecular mechanisms linked to autism and schizophrenia

December 13, 2018
Since the completion of the groundbreaking Human Genome Project in 2003, researchers have discovered changes to hundreds of places in the DNA, called genetic variants, associated with psychiatric diseases such as autism spectrum ...

CRISPR joins battle of the bulge, fights obesity without edits to genome

December 13, 2018
A weighty new study shows that CRISPR therapies can cut fat without cutting DNA. In a paper published Dec. 13, 2018, in the journal Science, UC San Francisco researchers describe how a modified version of CRISPR was used ...

Noncoding mutations contribute to autism risk

December 13, 2018
A whole-genome sequencing study of nearly 2,000 families has implicated mutations in 'promoter regions' of the genome—regions that precede the start of a gene—in autism. The study, which appears in the December 14 issue ...

New method for studying ALS more effectively

December 13, 2018
The neurodegenerative disease ALS causes motor neuron death and paralysis. However, long before the cells die, they lose contact with muscles as their axons atrophy. Researchers at Karolinska Institutet in Sweden have now ...

Paternal grandfather's high access to food may indicate higher mortality risk in grandsons

December 12, 2018
A paternal grandfather's access to food during his childhood is associated with mortality risk, especially cancer mortality, in his grandson, shows a large three-generational study from Stockholm University. The reason might ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.