Neural mechanisms linked with vulnerability to anxiety

February 9, 2011, Cell Press

New research examines the anxious brain during a fear conditioning task and provides insight into why some individuals may be more or less prone to anxiety disorders. The study, published by Cell Press in the February 10 issue of the journal Neuron, reveals neural mechanisms that may contribute to resilience against pathological fear and anxiety. The findings may help to direct therapeutic strategies for individuals who suffer from chronic anxiety as well as strategies that could help "at risk" individuals avoid developing anxiety disorders.

Previous studies have implicated a called the amygdala in the acquisition and expression of conditioned fear, this occurring when a stimulus (the conditioned stimulus, CS) becomes associated with an aversive object or event (the unconditioned stimulus, UCS). Another brain region, the (vmPFC), has been shown in both animals and humans to help inhibit conditioned fear after extinction training, during which the CS is repeatedly presented without the UCS. However, it is not clear how certain personality characteristics, like a tendency or vulnerability towards anxiety, influence these mechanisms.

"We were interested in examining why it is that some of us can overcome the discrete fears and nonspecific anxiety that we experience in our lives more easily than others," explains senior study author, Dr. Sonia J. Bishop from the University of California, Berkeley. "Or, in other words, what differences in might confer increased vulnerability for chronic fear and ?"

Dr. Bishop and colleagues performed a neuroimaging study to examine fear conditioning in human subjects who had been classified as having varying levels of "trait anxiety," a tendency to experience anxiety across a range of everyday situations. The researchers observed that subjects who had a high level of trait anxiety were more likely to have an enhanced amygdala response to CS fear cues and to show faster acquisition of learned "fear" of these cues. Individual differences in amygdala reactivity were independent of the second dimension of risk, this involving the vmPFC. Recruitment of this region during conditioned fear expression prior to extinction was linked with greater reduction in responses and was more pronounced in fear-resilient individuals.

The findings suggest that individual differences in amygdala and vmPFC function are independently associated with vulnerability to anxiety, with the potentially influencing the development of cue-specific fears (or phobias) and the vmPFC impacting the ability to downregulate both phasic fears and generalized anxiety. "An understanding of the neurocognitive mechanisms by which trait vulnerability to pathological is conferred may aid not only in explaining the variability in symptoms, but also in informing choice intervention and prediction of treatment response," concludes Dr. Bishop.

Earlier this month, Dr. Bishop attended an awards ceremony at NIH in recognition of her receipt of one of twelve prestigious Biobehavioral Research Awards for Innovative New Scientists given to enable her further pursuit of this important line of research.

Related Stories

Recommended for you

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.