Abnormal neural activity recorded from the deep brain of Parkinson's disease and dystonia patients

March 9, 2011

Movement disorders such as Parkinson's diseases and dystonia are caused by abnormal neural activity of the basal ganglia located deep in the brain. The basal ganglia are connected to the cerebral cortex in the brain surface through complex neural circuits. Their basic structure and connections, as well as the dysfunctions in movement disorders, have been examined extensively by using experimental animals. On the other hand, little is known about the human brain that is much more complex in either normal or diseased states.

An international joint research team led by Professor Toru Itakura and Assistant Professor Hiroki Nishibayashi from Wakayama Medical University, Japan, Professor Atsushi Nambu from the National Institute for Physiological Sciences, Japan, and Professor Hitoshi Kita from The University of Tennessee Health Science Center, TN, succeeded, for the first time, in recording cortically induced neural activity of the basal ganglia in patients with and dystonia during stereotaxic neurosurgery for the deep stimulation (DBS). This research has been reported in "Movement Disorders".

With the consent of patients and based on the ethical guidelines of Wakayama Medical University, the team recorded the of the globus pallidus, one of the nuclei in the basal ganglia, and examined their activity changes in response to the stimulation of the primary motor cortex. Typical triphasic responses were observed in patients with Parkinson's disease, and enhanced inhibitory responses were observed in a dystonia patient. The results confirmed previous data observed in experimental animals. These results suggest: 1) Cortically evoked neural responses in the basal ganglia can be useful for determining the target location of the DBS electrodes, and 2) Enhanced inhibitory neural responses in the globus pallidus may cause abnormal movements observed in dystonia.

Related Stories

Recommended for you

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

What if consciousness is not what drives the human mind?

November 22, 2017
Everyone knows what it feels like to have consciousness: it's that self-evident sense of personal awareness, which gives us a feeling of ownership and control over the thoughts, emotions and experiences that we have every ...

Schizophrenia originates early in pregnancy, 'mini-brain' research suggests

November 20, 2017
Symptoms of schizophrenia usually appear in adolescence or young adulthood, but new research reveals that the brain disease likely begins very early in development, toward the end of the first trimester of pregnancy. The ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.