In adolescence, the power to resist blooms in the brain

March 9, 2011

( -- Just when children are faced with intensifying peer pressure to misbehave, regions of the brain are actually blossoming in a way that heighten the ability to resist risky behavior, report researchers at three West Coast institutions.

The findings -- detailed in the March 10 issue of the journal Neuron -- may give parents a sigh of relief regarding their kids as they enter adolescence and pay more attention to their friends. However, the research provides scientists with basic insight about the brain's wiring, rather than direct clinical relevance for now.

In the study, 24 girls and 14 boys from ethnically and socioeconomically diverse backgrounds underwent (fMRI) scans twice, at ages 10 and 13, the latter representing when children have moved into early adolescence. Each time, they were presented with photos of faces making neutral, angry, fearful, happy and sad emotional expressions.

Non-invasive fMRI, when focused on the brain, measures blood flow changes using a magnetic field and radio frequency pulses, producing detailed images that provide scientists with information about or help medical staff diagnose disease.

Researchers compared the fMRI results from age 10 to age 13, finding that activity increased significantly in the ventral striatum and the ventral medial portion of the over this three-year period. In addition to the scans, the researchers considered the children's self-reports on their ability to resist peer influences and engagement in risky or delinquent behavior.

The most enhanced response occurred in the ventral striatum, a brain region most frequently associated with reward-related processing. Over time, increases in brain activity there correlated with increases in children's resistance to peer influence.

The video will load shortly.

"This is a complex point, because people tend to think of adolescence as the time when teenagers are really susceptible to ," said Jennifer H. Pfeifer, professor of psychology at the University of Oregon. "That is the case, but in addition to that added susceptibility they are also improving their ability to resist it. It's just that peer pressure is increasing because they spend a lot more time with peers during this time and less time with family. So it is a good thing that resistance to such influences is actually strengthening in their brains."

This study, which researchers believed to be the first to report longitudinal fMRI findings about changes in the way the brain processes emotion during this critical time of brain development, appears to fit into a growing body of evidence that ventral striatum development during early adolescence is critical to emotional regulation carried out by the brain's prefrontal circuitry, the researchers concluded.

"This is basic research that hopefully is laying the foundation for future studies with even more clinical relevance," said Pfeifer, director of the Developmental Social Neuroscience Lab. "We really have a lot to learn about how the brain responds to really basic emotional stimuli across development."

There was a surprise finding that deserves more study, though, Pfeifer said. Responses in the amygdala -- a small almond-shaped mass centrally located deep in the brain -- showed significant increases during this period only to the sad faces.

The amygdala plays a major role in emotional reactivity and indexing the salience of things in the environment. It's possible, Pfeifer said, that this response to sad faces could somehow be tied to the emergence of depression, especially in girls.

"This response in the amygdala raises questions we hope to pursue," she said. "The span from age 9 to 13 is critical in pubertal development. How do individual differences apply here? Identifying this response to 'sadness' in the amygdala opens the door to thinking about how changes in emotional reactivity might be related to the increase in depression that we see as kids enter puberty. Rates of depression are particularly enhanced for teen girls. Is this increased response to sad faces somehow part of that?"

Based on results of the new study, she added, "I think what we know about the ventral striatum may be poised to undergo a transformation over the next several years."

Related Stories

Recommended for you

Study uncovers specialized mouse neurons that play a unique role in pain

August 17, 2017
Researchers from the National Institutes of Health have identified a class of sensory neurons (nerve cells that electrically send and receive messages between the body and brain) that can be activated by stimuli as precise ...

Scientists discover powerful potential pain reliever

August 16, 2017
A team of scientists led by chemists Stephen Martin and James Sahn at The University of Texas at Austin have discovered what they say is a powerful pain reliever that acts on a previously unknown pain pathway. The synthetic ...

Researchers discover fundamental pathology behind ALS

August 16, 2017
A team led by scientists at St. Jude Children's Research Hospital and Mayo Clinic has identified a basic biological mechanism that kills neurons in amyotrophic lateral sclerosis (ALS) and in a related genetic disorder, frontotemporal ...

Scientists use magnetic fields to remotely stimulate brain—and control body movements

August 16, 2017
Scientists have used magnetism to activate tiny groups of cells in the brain, inducing bodily movements that include running, rotating and losing control of the extremities—an achievement that could lead to advances in ...

Scientists give star treatment to lesser-known cells crucial for brain development

August 16, 2017
After decades of relative neglect, star-shaped brain cells called astrocytes are finally getting their due. To gather insight into a critical aspect of brain development, a team of scientists examined the maturation of astrocytes ...

The nerve-guiding 'labels' that may one day help re-establish broken nervous connections

August 16, 2017
Scientists have identified a large group of biological 'labels' that guide nerves to ensure they make the correct connections and control different parts of the body. Although their research was conducted with fruit flies, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.