Cerebral spinal fluid guides stem cell development in the brain

March 9, 2011

Cerebrospinal fluid -- the clear and watery substance that bathes the brain and spinal cord -- is much more important to brain development than previously realized.

Howard Hughes Medical Institute investigator Christopher Walsh, his postdoctoral fellow Maria Lehtinen, former student Mauro Zappaterra, and their colleagues have discovered that cerebrospinal fluid (CSF) contains a complex mix of proteins that changes dramatically with age. In the lab, CSF by itself is enough to support the growth of neural stem cells, and this effect is particularly robust in young brains.

What's more, the protein make-up of CSF in people with malignant cancer is different from that of healthy people, the researchers found. "This suggests that the CSF can make a more supportive or less supportive environment for tumor growth," notes Walsh, Chief of Genetics at Children's Hospital Boston. The work is published in the March 10, 2011, issue of the journal Neuron.

Centuries ago, philosophers thought spinal fluid held particular importance for health. The French philosopher and mathematician René Descartes, for example, described the brain as a simple hydraulic machine, pumping fluid—pneuma anima, or 'animal spirits'—through the body's nerves like a Parisian water fountain.

"Recent history has not been so kind to CSF," Walsh notes. Today, most researchers think of it as a relatively simple salt solution that gives the brain buoyancy and helps protect it from knocking against the skull.

Several years ago, Walsh's work on brain development led him to suspect that there is much more to the unassuming fluid. He noticed that neural stem cells tend to line up around the brain's inner chambers, where CSF is stored, and stick cellular fingers, called cilia, into the pool of CSF. "That made us think, there's got to be something in CSF that's binding to cilia and controlling how the cell divides," Walsh says.

In 2007, Zappaterra and Walsh performed the first comprehensive analysis of embryonic human CSF. They found it holds hundreds of different proteins that are involved in a variety of tasks, including cell growth, transport, support, and signaling. "We were amazed at the diversity of substances that we identified in there, many of which people had no clue would be there," Walsh says.

In the new study, the researchers took small pieces of embryonic rat brain tissue and, using a thin platinum wire, deftly moved them onto culture plates made up of CSF from rats of different ages. They found that when brain stem cells bathe in CSF from young rats, they furiously divide. In contrast, when grown on CSF from older rats, there is less cell division, but CSF from all ages contains all that is needed to maintain brain in a dish. Subsequent analysis of the fluid showed that the amount of a protein called Insulin-like growth factor 2 (Igf2) strongly correlates with the level of cell division.

The researchers then teamed up with a group of scientists from Beth Israel Deaconess Medical Center that has a unique collection of CSF samples isolated from people with various stages of glioblastoma, a type of brain cancer in which tumors infiltrate the whole brain. The Beth Israel Deaconess group, led by Eric Wong, found that people with more advanced cancer have higher levels of Igf2 in CSF than do those with less severe forms of the disease.

The scientists don't know whether the increase in Igf2 levels is partly causing the cancer, or is instead a consequence of living with the disease. "We certainly don't think Igf2 is the only contributor to the pathology, because glioblastomas are very complex. But it may be an interesting biomarker to consider," says Maria Lehtinen, who is a joint first author of the study, along with Zappaterra.

Taking a closer look at CSF could be helpful in other brain diseases as well. Some researchers are investigating whether the levels of certain proteins, like Tau and Beta amyloid, might be used as predictors of Alzheimer's disease, for example.

Because CSF is made in the choroid plexus—the tiny knob in the brain's chambers that forms the interface between the bloodstream and the brain—it could explain part of the mystery of how changes in the body link up to the brain. For example, if you exercise a lot, you form more brain cells, but no one knows exactly how this works.

"We sometimes get very spiritual about this," Walsh says, laughing. "It presents mechanisms about how different parts of the body are talking to each other in ways that I hadn't really conceived of before."

Related Stories

Recommended for you

Researchers create tool to measure, control protein aggregation

October 22, 2017
A common thread ties seemingly unlinked disorders like Alzheimer's disease and type II diabetes together. This thread is known as protein aggregation and happens when proteins clump together. These complexes are a hallmark ...

'Selfish brain' wins out when competing with muscle power, study finds

October 20, 2017
Human brains are expensive - metabolically speaking. It takes lot of energy to run our sophisticated grey matter, and that comes at an evolutionary cost.

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.