Researchers gain new insight into the brain's ability to reorganize itself

March 18, 2011

When Geoffrey Murphy, Ph.D., talks about plastic structures, he's not talking about the same thing as Mr. McGuire in The Graduate. To Murphy, an associate professor of molecular and integrative physiology at the University of Michigan Medical School, plasticity refers to the brain's ability to change as we learn.

Murphy's lab, in collaboration with U-M's and Regeneration Laboratory run by Jack Parent, M.D., recently showed how the plasticity of the allowed mice to restore critical functions related to learning and memory after the scientists suppressed the animals' ability to make certain new brain cells.

The findings, published online this week in the , bring scientists one step closer to isolating the mechanisms by which the brain compensates for disruptions and reroutes neural functioning – which could ultimately lead to treatments for cognitive impairments in humans caused by disease and aging.

"It's amazing how the brain is capable of reorganizing itself in this manner," says Murphy, co-senior author of the study and researcher at U-M's Molecular and Behavioral Neuroscience Institute. "Right now, we're still figuring out exactly how the brain accomplishes all this at the molecular level, but it's sort of comforting to know that our brains are keeping track of all of this for us."

In previous research, the scientists had found that restricting cell division in the hippocampuses of mice using radiation or genetic manipulation resulted in reduced functioning in a cellular mechanism important to memory formation known as long-term potentiation.

But in this study, the researchers demonstrated that the disruption is only temporary and within six weeks, the mouse brains were able to compensate for the disruption and restore plasticity, says Parent, the study's other senior author, a researcher with the VA Ann Arbor Healthcare System and associate professor of neurology at the U-M Medical School.

After halting the ongoing growth of key brain cells in adult mice, the researchers found the brain circuitry compensated for the disruption by enabling existing neurons to be more active. The existing neurons also had longer life spans than when new cells were continuously being made.

"The results suggest that the birth of in the adult, which was experimentally disrupted, must be really important – important enough for the whole system to reorganize in response to its loss," Parent says.

More information: "Compensatory network changes in the dentate gyrus restore long-term potentiation following ablation of neurogenesis in young-adult mice," PNAS Online Early Edition, March 14, 2011.

Related Stories

Recommended for you

Memory for details matures gradually

September 26, 2017
In contrast to previous assumptions, the hippocampus, a brain structure that is central to learning and memory, does not complete its maturation until adolescence. Scientists of the Max Planck Institute for Human Development, ...

No evidence of hidden hearing loss from common recreational noise: study

September 26, 2017
Exposure to loud noises during common recreational activities is widely cited as a cause of "hidden hearing loss." A new study of young adults, however, finds that while hearing is temporarily affected after attending a loud ...

Premature birth linked to older 'brain age' in adult life

September 26, 2017
New King's College London research suggests that babies born very prematurely show accelerated brain development in adult life, as their brains look 'older' compared to non-premature babies.

Overturning widely held ideas: Visual attention drawn to meaning, not what stands out

September 25, 2017
Our visual attention is drawn to parts of a scene that have meaning, rather than to those that are salient or "stick out," according to new research from the Center for Mind and Brain at the University of California, Davis. ...

After 15 years in a vegetative state, nerve stimulation restores consciousness

September 25, 2017
A 35-year-old man who had been in a vegetative state for 15 years after a car accident has shown signs of consciousness after neurosurgeons implanted a vagus nerve stimulator into his chest. The findings reported in Current ...

Study reveals breakthrough in decoding brain function

September 25, 2017
If there's a final frontier in understanding the human body, it's definitely not the pinky. It's the brain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.