Researchers unravel protein's elusive role in embryo and disease development

March 2, 2011, Thomas Jefferson University

Reporting in Nature, scientists from Thomas Jefferson University have determined that a single protein called FADD controls multiple cell death pathways, a discovery that could lead to better, more targeted autoimmune disease and cancer drugs.

Twelve years ago, internationally-known immunologist Jianke Zhang, Ph.D., an associate professor in the Department of Microbiology and Immunology at Thomas Jefferson University, realized FADD, which stands for Fas-Associated protein with Death Domain, played an important role in and the onset of some diseases, but he didn't know exactly why until now.

In the paper published online March 2, Dr. Zhang and researchers show this protein regulates not one but two types of cell deaths pivotal for embryo and disease development. It is now known that FADD causes apoptosis, the "healthy" cell death, while keeping necrosis, the "toxic" one, at bay.

Understanding this pathway is instrumental in developing drugs with selectivity and fewer side effects, said Dr. Zhang, a member of the Kimmel Cancer Center at Jefferson,

"This work has direct impact on our understanding of diseases: cancer, autoimmune disease, immune-deficiency disease," he said. "This is the one gene that regulates these two processes in cells, so now we can find targeted drugs to control the cell death process."

The research suggests that with the absence or variation in expression of this one protein, an embryo may not develop properly or a person may develop disease later in life.

"This breakthrough is a testimony to Dr. Zhang's research acumen and dogged determination to solve a longstanding mystery regarding the regulation of pathways," said Tim Manser, Ph.D., professor and chair of the Department of Microbiology and Immunology at Jefferson. "It is gratifying to know that Thomas Jefferson University provides the research infrastructure that allows outstanding researchers like Dr. Zhang to make seminal discoveries, such as those reported in the Nature paper."

FADD's importance in embryogenesis and lymphocyte death response has been known, but the mechanism that underlies these functions in FADD has remained elusive.

Researchers found that mice that did not express FADD contained raised levels of RIP1, Receptor-Interacting Protein 1, an important protein that mediates necrosis and the apoptotic processes, and their embryonic development failed due to massive necrosis.

"When the FADD-mediated death process is deregulated, we will produce white bloods cells that will attack our own tissue, which is the cause of auto-immune diseases, such as arthritis and lupus," said Dr. Zhang. "And without the necessary cell deaths that are required for tumor surveillance, humans could develop cancer."

There are drugs currently under development today that activate TNF-a-related apoptosis-inducing ligand (TRAIL) death receptor signaling, which induces apoptosis through FADD in cancer cells specifically, but its mechanisms are not well understood and the treatment not perfected. There are also that are resistant to TRAIL-induced apoptosis for unknown causes.

"The killing of these tumor cells is not efficient, and this paper actually figured out why," said Dr. Zhang. "We now know that the FADD , while required for apoptotic death, is inhibiting necrotic death in tumor cells."

Related Stories

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.