New drug shows potential for treatment-resistant leukemia

April 11, 2011

A study from Tufts Medical Center researchers published today finds that a novel drug shows promise for treating leukemia patients who have few other options because their disease has developed resistance to standard treatment.

Appearing in the journal Cancer Cell, the study is the first published report showing that the drug, DCC-2036, fights (CML) in a mouse model of the disease and is effective against human leukemia cells.

"These findings demonstrate that DCC-2036 is an excellent candidate for clinical development as a treatment for resistant CML. Not all drugs that work in a test tube will actually be effective in a living organism such as our mouse model," said Richard Van Etten, MD, PhD, Director of Tuft's Medical Center's Cancer Center and senior author of the study.

Other authors of the study are scientists with Deciphera Pharmaceuticals LLC of Lawrence, Kansas, and Emerald Biostructures of Bainbridge Island, WA.

DCC-2036 is a (TKI), a class of drugs that block the action of an abnormal enzyme, BCR-ABL1, that sends chemical messenges that tell CML cells to grow. The development of TKI drugs such as imatinib (®) dramatically improved the prognosis for patients with CML, which strikes about 5,000 new patients each year in the United States. But about a third of patients will eventually relapse, principally because of mutations that render BCR-ABL1 resistant to the TKI. Such patients are left with few treatment options other than bone marrow transplantation.

The study showed that in human cells taken from treatment-resistant patients who had received the new drug, DCC-2036 tamped down the mutant enzyme that led to their relapse. The study also found that the drug killed malignant cells and prolonged survival in a of CML developed by Van Etten's team.

Deciphera Pharmaceuticals, LLC used crystal structures of BCR-ABL1 to custom-design the novel drug to inhibit the mutant enzyme that leads to treatment resistance in CML patients. "The study illustrates the power of designing drugs based upon structures of the target and initial testing of these drugs in mouse models before proceeding to the clinic. This type of targeted design is a paradigm for how cancer treatments will be developed in the 21st century," Van Etten said.

Related Stories

Recommended for you

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.