Huntington's disease protein has broader effects on brain, study shows

April 5, 2011, Cell Press

In Huntington's disease, the mutant protein known as huntingtin leads to the degeneration of a part of the brain known as the basal ganglia, causing the motor disturbances that represent one of the most defining features of the fatal disease. But a new study reported in the April issue of Cell Metabolism, a Cell Press publication, shows that the mutant protein also is responsible for metabolic imbalances in the hypothalamus, a brain region that plays an important role in appetite control.

"This helps to explain and increases in appetite that have been observed in people at the early stages of disease," even before any motor symptoms appear, said Åsa Petersén of Lund University in Sweden. "It should encourage us to do more clinical studies. If we really understand the pathways that are affected, it may lead to new targets for intervention."

The clinical diagnosis of Huntington's disease is based entirely on the presence of overt motor dysfunction. But, in fact, Petersén said, the original publication that defined the disease back in 1872 described a wide spectrum of problems: motor abnormalities, depression, cognitive decline and changes in body weight among them. Subsequent studies of the Huntington's brain traced the motor disturbances to massive losses of the . "Those findings overshadowed other changes," Petersén said.

But Petersén spends half of her time working as a clinician. She sees people with a diagnosis of Huntington's disease and carriers of the disease – people who know they carry the mutant gene and are therefore guaranteed to get the disease but who don't yet have any motor symptoms at all. "They complain about other symptoms," she said, including depression, anxiety, sleep disturbances and increases in appetite and weight.

Those anecdotes led her to suspect that the , which is ubiquitously expressed, might have effects on other parts of the brain, and the hypothalamus in particular. In an earlier study, she examined the brains of Huntington's carriers to find structural changes in the hypothalamus that could be observed 10 years before motor symptoms set in, along with shifts in brain chemistry.

In the new study, Petersén and her colleagues set out to confirm that those metabolic abnormalities are due to the effects of mutant huntingtin. First they showed that mice with develop impaired glucose metabolism along with pronounced resistance to insulin and the fat hormone leptin. Those metabolic symptoms could be reproduced in mice that only expressed the mutant huntingtin in the hypothalamus. When the researchers disabled the mutant huntingtin protein only in the hypothalamus, those metabolic disturbances disappeared.

"Our findings establish a causal link between mutant huntingtin expression in the and metabolic dysfunction," the researchers wrote. They also suggest that metabolic parameters could serve as powerful readouts for assessing therapies aimed at treating the disease by targeting the mutant protein in the brain.

Petersén says she suspects the mutant huntingtin will ultimately be found to influence other processes, both in the brain and in other tissues. She has plans to further explore the connection between the mutant protein and the depression, anxiety and other symptoms that also may be early signs of the disease.

In the broader scheme of things, she says the new findings highlight the important links between the study of metabolism and neuroscience. "There's a lot to be gained through cross-fertilization between the two fields," she said.

Related Stories

Recommended for you

Spare parts from small parts: Novel scaffolds to grow muscle

February 20, 2018
Australian biomedical engineers have successfully produced a 3D material that mimics nature to transform cells into muscle.

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.