Another iron in the fire

April 19, 2011 By Janet Wilson, University of California, Irvine
Celia Goulding, assistant professor of molecular biology & biochemistry, and fellow researchers have identified a different way TB bacteria get the iron they need to grow - which could provide a different drug target for fighting the deadly disease. Credit: Steve Zylius / University Communications

A tiny protein has been identified by University of California researchers as a possible alternate route for tuberculosis to spread in the human body – which could lead to better treatments for one of the world’s most stubborn diseases.

One in three people around the globe are infected with Mycobacterium , and about 1.8 million die each year of complications, according to the World Health Organization. It’s “a crisis compounded by the emergence of multidrug resistance and the AIDS pandemic,” writes UC Irvine structural biologist Celia Goulding in the March 22 issue of Proceedings of the National Academy of Sciences. “There is an urgent need to understand the pathogen’s survival tactics.”

She and her team have identified one such tactic. For five years, Goulding, assistant professor of molecular biology & biochemistry, has had her eye on a particular , one of nearly 4,000 associated with the disease. TB bacteria need iron to grow, and scientists three decades ago pointed to well-known siderophores – literally “iron carriers” in Greek – as the main path for tubercular cells to scavenge iron and storm the human body. But even as multiple variations of the disease have developed resistance to the drugs long used to combat them in other ways, efforts to stop siderophores from feeding TB have failed.

Now Goulding and colleagues have shown that the protein she identified can also grab iron from another one  known as heme to nurture TB bacteria. They think there’s a chance of shutting off this source – along with the siderophore source – and eradicating the disease.

“It’s very cool,” says Goulding, who notes that 80 percent of the body’s total iron is in the form of heme, a key part of hemoglobin in red blood cells. Other studies had found that anthrax and streptococcus cells could feed off heme, and she was convinced the TB pathogen could as well. After more than four years of dogged research, Goulding and a team of interdisciplinary researchers from UCI and UCLA proved she was right.

UCI researchers scientists first brewed up large batches of a rich broth containing an extract of yeast, a type of sugar and other ingredients. Then a harmless form of E. coli – which produces Goulding’s protein – was added to the mix. Goulding painstakingly determined the three-dimensional atomic structure of the atoms of the protein.

Next, UCLA microbiologists showed that within the deadly TB bacteria, the same protein was gobbling up iron. Now all the researchers are trying to develop drugs that can cap the protein or otherwise starve it of , providing an effective new means of keeping the deadly disease from spreading into the lungs and elsewhere.

“One of the most exciting discoveries is that the Goulding group has clearly demonstrated a novel heme acquisition pathway for tuberculosis. This pathway is associated with important proteins that are very likely to become major drug targets for the disease,” says James Sacchettini, professor of biochemistry, biophysics and chemistry at Texas A&M University, who researches TB but was not involved in the study.

People with AIDS, the elderly and others with weak immune systems are particularly susceptible to TB. Multidrug-resistant strains can require months of painful drug treatments or surgery, which still may not kill the disease. Combining those approaches with new ones could provide the necessary knockout punch. Goulding cautions, however, that it could take a decade to develop and test such treatments for effectiveness and safety.

The work was funded by grants from the national and California American Lung Association and National Institutes of Health. Fellow authors include Christine Harmston, Cedric Owens, Nicholas Chim, Angelina Iniguez, Robert Morse and Lisa McMath at UCI; and Michael Tullius, Jacqueline Kimmey, Michael Sawaya, Julian Whitelegge and Marcus Horwitz at UCLA.

Related Stories

Recommended for you

Ambitious global virome project could mark end of pandemic era

February 23, 2018
Rather than wait for viruses like Ebola, SARS and Zika to become outbreaks that force the world to react, a new global initiative seeks to proactively identify, prepare for and stop viral threats before they become pandemics.

Forecasting antibiotic resistance with a 'weather map' of local data

February 23, 2018
The resistance that infectious microbes have to antibiotics makes it difficult for physicians to confidently select the right drug to treat an infection. And that resistance is dynamic: It changes from year to year and varies ...

Scientists gain new insight on how antibodies interact with widespread respiratory virus

February 22, 2018
Scientists have found and characterized the activity of four antibodies produced by the human immune system that target an important protein found in respiratory syncytial virus (RSV), according to new research published ...

Study reveals how kidney disease happens

February 22, 2018
Monash researchers have solved a mystery, revealing how certain immune cells work together to instigate autoimmune kidney disease.

Past encounters with the flu shape vaccine response

February 20, 2018
New research on why the influenza vaccine was only modestly effective in recent years shows that immune history with the flu influences a person's response to the vaccine.

Building better tiny kidneys to test drugs and help people avoid dialysis

February 16, 2018
A free online kidney atlas built by USC researchers empowers stem cell scientists everywhere to generate more human-like tiny kidneys for testing new drugs and creating renal replacement therapies.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.