Scientists develop compound that effectively halts progression of multiple sclerosis

April 18, 2011

Scientists from the Florida campus of The Scripps Research Institute have developed the first of a new class of highly selective compounds that effectively suppresses the severity of multiple sclerosis in animal models. The new compound could provide new and potentially more effective therapeutic approaches to multiple sclerosis and other autoimmune diseases that affect patients worldwide.

The study appeared April 17, 2011, in an advance online edition of the journal Nature.

Current treatments for autoimmunity suppress the patient's entire immune system, leaving patients vulnerable to a range of adverse side effects. Because the new compound, known as SR1001, only blocks the actions of a specific cell type playing a significant role in autoimmunity, it appears to avoid many of the widespread side effects of current therapies.

"This is a novel drug that works effectively in animal models with few side effects," said Tom Burris, Ph.D., a professor in the Department of Molecular Therapeutics at Scripps Florida who led the study, which was a multidisciplinary collaboration with scientists including Patrick Griffin, William Roush, and Ted Kamenecka of Scripps Research, and Paul Drew of the University of Arkansas for Medical Sciences. "We have been involved in several discussions with both pharmaceutical and biotechnology firms who are very interested in developing it further."

A lengthy process of drug development and review is required to ensure a new drug's safety and efficacy before it can be brought to market.

"This impressive multidisciplinary team has used a combined structural and functional approach to describe a class of molecules that could lead to new medicines for treating autoimmune diseases," said Charles Edmonds, Ph.D. who oversees structural biology grants at the National Institutes of Health. "Breakthroughs such as this highlight the value of scientists with diverse expertise joining forces to solve important biological problems that have the potential to benefit human health."

Targeting Specific Receptors

For the past several years, Burris and his colleagues have been investigating small-molecule compounds that affect particular disease-related receptors (structures that bind other molecules, triggering some effect on the cell). In particular, the scientists have been interested in a pair of "orphan nuclear receptors" (receptors with no known natural binding partner) called RORα and RORγ involved in both autoimmune and metabolic diseases.

These particular receptors play a critical role in the development of TH17 cells, a form of T helper cells that make up part of the immune system. A relatively new discovery, TH17 cells have been implicated in the pathology of numerous , including , rheumatoid arthritis, inflammatory bowel disease, and lupus. TH17 cells produce Interleukin-17, a natural molecule that can induce inflammation, a characteristic of autoimmunity.

"If you eliminate TH17 cell signals, you basically eliminate the disease in animal models," Burris said. "Our compound is the first small-molecule orally active drug that targets this specific cell type and shuts it down. Once SR1001 is optimized, chances are it will be far more potent and effective."

The compound works without affecting other types of T helper cells and without any significant metabolic impact, Burris added.

More information: "Inhibition of TH17 Differentiation and Suppression of Autoimmunity by a Selective Synthetic ROR Ligand," www.nature.com/nature/journal/ … abs/nature10075.html

Related Stories

Recommended for you

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

In lab research, scientists slow progression of a fatal form of muscular dystrophy

December 8, 2017
In a paper published in the Nature journal Scientific Reports, Saint Louis University (SLU) researchers report that a new drug reduces fibrosis (scarring) and prevents loss of muscle function in an animal model of Duchenne ...

Double-blind study shows HIV vaccine not effective in viral suppression

December 7, 2017
(Medical Xpress)—A large team of researchers from the U.S. and Canada has conducted a randomized double-blind study of the effectiveness of an HIV vaccine and has found it to be ineffective in suppressing the virus. In ...

Time matters: Does our biological clock keep cancer at bay?

December 7, 2017
Our body has an internal biological or "circadian" clock, which cycles daily and is synchronized with solar time. New research done in mice suggests that it can help suppress cancer. The study, publishing 7 December in the ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

wealthychef
not rated yet Apr 18, 2011
I hate spammers. Hopefully this new treatment will also destroy spam on contact.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.