Scientists develop compound that effectively halts progression of multiple sclerosis

April 18, 2011

Scientists from the Florida campus of The Scripps Research Institute have developed the first of a new class of highly selective compounds that effectively suppresses the severity of multiple sclerosis in animal models. The new compound could provide new and potentially more effective therapeutic approaches to multiple sclerosis and other autoimmune diseases that affect patients worldwide.

The study appeared April 17, 2011, in an advance online edition of the journal Nature.

Current treatments for autoimmunity suppress the patient's entire immune system, leaving patients vulnerable to a range of adverse side effects. Because the new compound, known as SR1001, only blocks the actions of a specific cell type playing a significant role in autoimmunity, it appears to avoid many of the widespread side effects of current therapies.

"This is a novel drug that works effectively in animal models with few side effects," said Tom Burris, Ph.D., a professor in the Department of Molecular Therapeutics at Scripps Florida who led the study, which was a multidisciplinary collaboration with scientists including Patrick Griffin, William Roush, and Ted Kamenecka of Scripps Research, and Paul Drew of the University of Arkansas for Medical Sciences. "We have been involved in several discussions with both pharmaceutical and biotechnology firms who are very interested in developing it further."

A lengthy process of drug development and review is required to ensure a new drug's safety and efficacy before it can be brought to market.

"This impressive multidisciplinary team has used a combined structural and functional approach to describe a class of molecules that could lead to new medicines for treating autoimmune diseases," said Charles Edmonds, Ph.D. who oversees structural biology grants at the National Institutes of Health. "Breakthroughs such as this highlight the value of scientists with diverse expertise joining forces to solve important biological problems that have the potential to benefit human health."

Targeting Specific Receptors

For the past several years, Burris and his colleagues have been investigating small-molecule compounds that affect particular disease-related receptors (structures that bind other molecules, triggering some effect on the cell). In particular, the scientists have been interested in a pair of "orphan nuclear receptors" (receptors with no known natural binding partner) called RORα and RORγ involved in both autoimmune and metabolic diseases.

These particular receptors play a critical role in the development of TH17 cells, a form of T helper cells that make up part of the immune system. A relatively new discovery, TH17 cells have been implicated in the pathology of numerous , including , rheumatoid arthritis, inflammatory bowel disease, and lupus. TH17 cells produce Interleukin-17, a natural molecule that can induce inflammation, a characteristic of autoimmunity.

"If you eliminate TH17 cell signals, you basically eliminate the disease in animal models," Burris said. "Our compound is the first small-molecule orally active drug that targets this specific cell type and shuts it down. Once SR1001 is optimized, chances are it will be far more potent and effective."

The compound works without affecting other types of T helper cells and without any significant metabolic impact, Burris added.

More information: "Inhibition of TH17 Differentiation and Suppression of Autoimmunity by a Selective Synthetic ROR Ligand," www.nature.com/nature/journal/ … abs/nature10075.html

Related Stories

Recommended for you

Study shows stress could be just as unhealthy as junk food

October 16, 2017
We all know that a poor diet is unhealthy, but a new BYU study finds that stress may just as harmful to our bodies as a really bad diet.

Childhood poverty, poor support may drive up pregnant woman's biological age

October 16, 2017
Pregnant women who had low socioeconomic status during childhood and who have poor family social support appear to prematurely age on a cellular level, potentially raising the risk for complications, a new study has found.

Blood vessel 'master gene' discovery could lead to treatments for liver disease

October 16, 2017
Scientists have identified a key gene in blood vessels which could provide a new way to assess and potentially treat liver disease.

Chronic inflammation plays critical role in sustained delivery of new muscular dystrophy therapy

October 16, 2017
Macrophages, a type of white blood cell involved in inflammation, readily take up a newly approved medication for Duchenne muscular dystrophy (DMD) and promote its sustained delivery to regenerating muscle fibers long after ...

Worms reveal secrets of aging: Researchers discover a conserved pathway that controls aging

October 13, 2017
Investigators at Case Western Reserve University School of Medicine and University Hospitals Health System have identified a new molecular pathway that controls lifespan and healthspan in worms and mammals. In a Nature Communications ...

New study demonstrates importance of studying sleep and eating in tandem

October 13, 2017
A new study from scientists on the Florida campus of The Scripps Research Institute (TSRI) offers important insights into possible links between sleep and hunger—and the benefits of studying the two in tandem. A related ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

wealthychef
not rated yet Apr 18, 2011
I hate spammers. Hopefully this new treatment will also destroy spam on contact.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.